
APPLIED SCIENCE ASSOCIATES, INC.
105 EAST CHATHAM STREET

POST OFFICE BOX 949

APEX, NORTH CAROLINA 27502

PHONE (919) 362-7256

O(D r*o.,w

OCEAN DYNAMICS STUDIES

0I.

e o .

3

Final Report *

May, 1974 * m

NASA CONTRACT NO. NAS6-2307 n

for )o

Preproduced byUnder

for , o

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151



FOREWORD

This report was prepared for the National Aeronautics and Space

Administration by the Applied Science Associates under Contract NAS6-2307.

J. T. McGoogan and H. R. Stanley, of NASA Wallops Station, acted as NASA

coordinators.

The study was performed both at the Applied Science Associates and at

North Carolina State University. N. E. Huang served as project director.

The theoretical part was assisted by Professor C. C. Tung of the North

Carolina State University at Raleigh as a conslultant, Dr. N. Guttman

worked on the dispersive relation, and Mr. S. R. Long worked on the

capillary gravity waves interaction with currents. The experimental part

was carried out at the North Carolina State University through a sub-

contract to Professor F. Y. Sorrell. G. V. Strum and S. R. Long also
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ABSTRACT

This report presents the results of a one-year study of current-wave

interactions. The subjects treated include both theoretical and

experimental parts.

In the theoretical study, three problems are discussed. The first is

the dispersive relation of a random gravity-capillary wave field. It is

concluded that no universal relationship can be found for all the sea

states. The second problem is on the changes of the statistical properties

of surface waves under the influence of currents. The possibility of

utilizing such changes for remote sensing of surface currents is also

discussed. The third problem is on the interaction of capillary-gravity

with the non-uniform currents.

The experimental study deals with the measurement of wave-current

interaction and trying to establish the feasibility of using such measurements

for remote sensing of surface currents. A laser probe was developed to

measure the surface statistics. In a laboratory, the possibility of using

current-wave interaction as a means of current measurement was' demonstrated.
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PART I

THEORETICAL STUDIES

The theoretical study consists of three parts. The first part

discusses the non-linear dispersive relation in a random gravity-

capillary wave field. The result indicates that the dispersive relation

is a function of the energy spectrum; therefore, a universal dispersive

relationship seems impossible. The second part deals with the statistical

properties of surface waves under the influence of currents. The changes

due to currents can be used as an additional method to measure surface

current. The third part dicusses the interaction of capillary-gravity

waves with non-uniform current. A perturbation scheme is used to overcome

the difficulty of multiple values of the dispersive relationship in this

range of the wave spectrum.
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1. Dispersive relation for gravity-capillary waves.

1.1 INTRODUCTION

Looking over the surface of the open ocean, a casual observer notices

a seemingly endless moving succession of irregular humps and hollows, or

waves. These surface waves are the most common motion at the air-sea in-

terface. They form an oscillatory pattern and travel in all directions

and at different speeds.

One characteristic of an oscillatory wave is its period. This quan-

tity is the time interval between passages, at a fixed point, of a given

phase of the oscillation. Its reciprocal is the wave frequency n. Since

n is a function solely of time, it can be measured relatively easily from

a point by noting the elapsed time between the passage of two crests.

Another characteristic is the wave length, or the distance between

particles moving in the same phase of the oscillation. The reciprocal

of this quantity is the wave number k. Since the wave travels on the two

dimensional free surface x = (x,y), the wave length and directional prop-

erties can be combined and represented by the vector wave number

'k = k(x). Measurement of the directional wave length at infinitely many

points is necessary to obtain spatial correlations over the two dimen-

sional wave number plane.

The velocity c at which the wave travels is defined as

n (1)

Since the frequency n is non-directional and relatively easy to measure,

and since the wave number k is economically and logistically prohibitive

to obtain over the free surface, it would be advantageous to find a re-

lationship between n and k.
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For a single gravity wave traveling in the x direction, such a re-

lationship can be derived. Consider a two dimensional spatial coordinate

system (x,z) where z is measured positively upward and the plane z = 0

represents the mean free surface level as shown in Figure 1. Assuming

an incompressible, inviscid fluid, the motion can be regarded as irrota-

tional and is thus controlled by Laplace's equation

2V (x,z,t) = 0 (2)

where is the velocity potential and t is time. By requiring that no

motion exist at z = -h, where h is the water depth, and that Bernoulli's

linearized equation

4 -p(3)

hold at the free surface, (2) can be solved for . 'In (3), g is the

gravitational acceleration, p is the pressure at the interface, p is the

density of the water, and C is the oscillatory surface elevation

c(x,t) = a cos(kx - nt) (4)

where a is the wave amplitude. Bernoulli's equation has been linearized

under the assumption that terms of the order of the square of the veloc-

ity components are negligible compared to other terms.

The solution to (2) is

S= -ca osh[k(z+h)] sin(kx - nt) . (5)

Substituting (5) into (3), using (1), and assuming that kc<<l, i.e., a

small wave amplitude assumption,
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Figure 1. Representation of a single wave
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Ig - C2k coth(kh)] = - = (I * (6)

If capillary waves are also included, the effect of-surface tension

must be considered. The difference between the water pressure p and the

atmospheric pressure pa at the interface is a result of surface tension

such that
2

ax

where y is the ratio of the surface tension to the water density. Equa-

tion (7) has been linearized-by considering terms of the order of the

square of the gradient of the surface elevation in the representation of

the surface curvature to be negligible compared to other terms. The at-

mospheric pressure is assumed to be constant, and the free surface C = 0

is taken as a reference level at which p 0= . In this situation p 0

since the surface tension term vanishes. Thus,
2

p = " - (8)
ax

Substituting (4) into (8) and then (8) into (6) and rearranging,

2 2
g + yk2  .c k coth(kh) . (9)

For deep water waves, h is large and asymptotically

coth(kh) = 1 (10)

so that

+ yk = c . - (11)

Equation (11) is the linearized relationship for the speed of a

single wave under the restoring influences of gravity and surface tension.
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It is depicted graphically in Figure 2. The speed is a function of the

wave length and thus represents the dispersion of the wave. Substituting

(1) into (11) results in the dispersive relationship as a function of

n and k,

2 3
-n gk + yk . (12)

Equation (12) is graphically depicted in Figure 3.

It is important to note that (12) is in reality only approximately

true since just linear terms are considered. Cole (1968) discusses the

general case of periodic motions of slightly non-linear oscillations.

He treats various physical problems that are characterized by the pres-

ence of a small disturbance which acts over a long time. He shows in

his non-linear asymptotic expansion of the solution to these oscillatory

problems that a frequency shift from the linear solution will occur, and

that this shift is generally a function of the amplitude of the oscil-

lation.

Becoming more specific, Kinsman (1965) discusses the non-linear ex-

pansions of the phase speed for single gravity and capillary waves. For

gravity waves, the third order expansion includes a perturbation on the

linear phase speed that is a function of the square of the amplitude.

The capillary wave higher order solution also includes a perturbation on

the linear phase speed that is a function of the square of the amplitude.

Using (1) to transform these results into frequencies, it is found that

even though the restoring forces to the oscillatory waves are different,

both the gravity and capillary wave frequencies will exhibit shifts from

the linear solution that are dependent upon the square of the amplitude

of the waves.
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Comparison of the linear dispersion with observed data was made by

Longuet-Higgins et al. (1963) for gravity waves with frequencies up to

4 rad sec-1. They found that the waves appeared a little shorter than

those predicted by linear theory. The mean increase in the observed wave

number is about 10 percent. The authors note, however, that they are

skeptical of the calibration of the instruments. In addition, the buoy

used has a diameter that is about one-third the shortest wave length.

When the buoy is located near the crest or trough of the shorter waves

in the range of the experiment, it will not completely rest on the water

surface and slope measurements may be inaccurate. The resulting wave

numbers may therefore be inaccurate. These possible errors cast some

doubt on the validity of the 10 percent difference between the observed

wave numbers and those suggested by linear theory.

Yefimov and Khristoforov (1971) also compared the linear dispersion

with observed data for gravity waves with frequencies up to 4 rad sec-1 .

Their comparison is based on measurements of the velocity spectra at l m

and 3 m below the surface. They show that for frequencies below 2.5

rad sec-1 the waves are slightly shorter than those suggested by linear

theory. Above 2.5 rad sec -1 , the waves are longer than suggested by

linear theory. They emphasize, however, that small deviations from the

linear relationship in the low frequency range can be caused by the re-

cording by the measuring equipment of harmonics of the principal oscil-

lation. Additionally, the authors point out that the large deviations

between the observed data and the linear theory at frequencies near 4

rad sec-1 are the result of the high frequency turbulent regime of the

velocity spectra.
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Grose (1971) and Grose et al. (1972) measured wave heights relative

to a buoy for gravity waves with frequencies up to about 4 rad sec-l

It is shown in these papers that the linear dispersion suggests wave

numbers that are too large when compared to values computed from the

wave height measurements. In other words, the observed wave numbers

are smaller than those predicted by linear theory. The authors state,

however, that the measuring technique does not differentiate between

fundamental waves and harmonics. All wave components are treated as

fundamentals so that errors in the observed dispersive relationship do

exist.

Comparison between the linear and observed dispersion in the capil-

lary wave range has, unfortunately, not been made. Experimentation in
this area needs to be accomplished and should provide .very wrthhi'le

results.

Linearizing the governing equations and boundary conditions de-

creases the reality of the surface motion but greatly simplifies the

mathematics since the principle of superposition is applicable. Any

linear combination of solutions to the equations is itself a solution.

For example, consider two waves of equal amplitude but slightly differ-

ing frequencies and wave numbers traveling in the same direction. Mathe-

matically,

1 = a cos(k x - n t) (13)

2 = a cos(k x - n t) (14)2 2 2



k = k , n = n (15)
1 2 1 2

k - k << k , n - n <<n (16)
1 2 1 1 2 1

Each wave travels at its own phase speed. When they meet, however, they

interact to form a new wave.

3 1 2

2a os (k-k)x (n - n )t (k+k2)x= 2a 2 -s2 cos 2

(n +n2)t (17)

From (15) and (16), the argument of the first cosine function of (17) will

be small. This term thus serves as a slowly varying amplitude modulator

of the second cosine function or basic wave. Writing

(k -k )x (n2 -n)t
a = 2a cos 22  2 (18)

and

k +k n +n
= k1+k2  n 12 (19)

3 2 ' 3 2

(17) can be restated as

3 = a'cos(k x - n3t) (20)

Since k3 and n3 must satisfy the dispersion depicted in Figure 3,

2 3
n = gk3+yk3 (21)
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or
n +n 2 k +k k +k 3
(- ) = g (12) + Y(- - ) • (22)

Obviously, from (22), even though the new wave was produced from the sum

of C1 and C2, it will not be dispersed according to the summation rela-

tionship

2 2 3 3
n1 + n2  = g(kl+k 2 ) + y(k +k2) . (23)

The addition of the two sinusoids as seen in Figure 4 begins to

show some of the properties of ocean waves. By adding together a large

number of sinusoids and by considering the directional properties of the

waves over the two dimensional sea surface plane, the irregular pattern

of the ocean surface can be approximated. The true random surface, how-
ever, must be describe .By linear au he" non-li near

JIle I-*rter an' -e nuin-Winear

parts of the governing equations.,

The importance of non-linear interactions for gravity waves was dis-

cussed by Phillips (1960a, 1969). He showed that the interaction of

three primary waves can cause a resonance condition to exist so that

secondary waves will be generated. A weak energy transfer from the pri-

mary to the secondary waves will also occur. McGoldrick (1965) studied

interactions among capillary and among capillary and gravity waves and

found that resonance and thus secondary wave generation and correspond-

ing energy transfer occur with certain triads of waves. Longuet-Higgins

(1963a) explained the non-linear mechanism for the fc-rmation of capil-

lary waves on the forward face of gravity waves. He related this process

to the generation of waves by wind.



Figure 4. Addition of two sinusoids with different wave numbers at time of t = 0
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All of the above studies are important contributions to the under-

standing of surface waves. They all concern non-linear interactions, but

the development of each theory relies on the assumption of the validity

of the linear dispersive relationship (12). The resonance models in

particular are critically dependent upon this assumption. The reliance

upon the linear dispersion is true not only for the three papers cited,

but for virtually all studies involving non-linear interactions. If (12)

is not a good representation of the true dispersion, then all of these

papers--some of which are major contributions--may be improved.

The present study investigates the dispersion of non-linearly in-

teracting random pelagic gravity and capillary surface waves. A quanti-

tative analysis is given, and the deviation from linear theory is exam-

ined in terms of the non-linear interactions.

Not only is the non-linear dispersion important in the assessment

of major theories that lead to the understanding of random waves, but it

is also important in determining the transformations between wave number

and.frequency spectra. An accurate transformation is necessary in view

of the economical and logistical problems of wave number measurement in

the random ocean and of the relative ease of frequency measurements.

The discussion so far has related to wave-wave interactions. Wave-

current interactions, however, also affect the dispersion. The change in

wave number and amplitude when short waves ride on long swells was rigor-

ously calculated by Longuet-Higgins and Stewart (1960). The changes in

wave characteristics when waves interact with currents was also noted by

Whitham (1960, 1962). Since an accurate transformation between wave number
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and frequency spectra is desired, the present study additionally describes

the modification needed in the dispersion when the waves are under the in-

fluence of current. Although the modification is given only for a single

wave, the logic of the derivation is valid for random waves.
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1.2 SPECIFICATION OF THE RANDOM SEA

The detailed pattern of the waves on the sea surface is random in

the sense that it varies without regularity in both space and time. The

motion of the waves obeys certain known dynamical and kinematical restric-

tions. The randomness, however, must be treated statistically. The sta-

tistical measures of the motion can then be used to ascribe some order to

the surface structure. It is necessary, therefore, to specify the dynam-

ical, kinematical, and statistical properties of the random sea surface.

Consider- a rectangular coordinate system with the z-axis measured

positive vertically upward with the plane z 0 at the mean free surface

level. Any point in this system can be described by z and a horizontal

position vector x = (x,y). Under the standard assumptions of an incom-

pressible, inviscid fluid, the motion can be approximated as irrotational.

This motion is governed by Laplace's equation

V 2(x,z,t) = 0 (24)

where O(x,z,t) is the velocity potential as a function of x,z and time t.

If it is further assumed that the random wave field is statistically

stationary with respect to both time and space and that there is no

motion at z = -=, Phillips (1960a) showed that the solution to (24) is

(x,zt) = knf dA(k,n)exp[jkz]exp[i(k-x - nt)] (25)

where dA(k,n) is any complex valued random function of the horizontal

wave number vector k and frequency n. The velocity potential is rep-

resented as a Fourier-Stieltjes integral with the integration over all

wave number-frequency space.
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Under the same assumptions Phillips (1960a) showed. that the surface

elevation r(x,t) can be represented as

C(x,t) = fkndB(k,n)exp[i(k.x - nt)] (26)

where is the displacement from the mean free surface = 0 and dB(k,n)

is another complex valued random function. Since c(x,t) is real,

c(x,t) = fdB(k,n)exp[i(k.x - nt)]kn

kn dB*(k,n)exp[-i(k.x - nt)]

I dB*(-k,-n)exp[i(kx - nt)] (27)

where dB*(k,n) is the complex conjugate of dB(k,n).,

A relationship exists between dB(k,n). and the directional wave energy

spectrum X(k,n) such that

dB(ki,ni)dB*(k ,n.) = X(ki,ni)dkidn. if i = j

0 otherwise (28)

where the overbar indicates an ensemble average. The spectral function

is perhaps the most common representation of the wave field. In order

to relate quantities other than the surface elevation to the wave spec-

trum, it is necessary to find a relationship between dA(k,n) and dB(k,n).

This can be done from the kinematic boundary condition at the free sur-

face.
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If.the position of the free surface is specified by C, the total

derivative of C is

d- ac + q (29)
dt- aT - h

where vh = (a/ax, a/ay) is the horizontal gradient operator, q is the

horizontal velocity vector, and the subscript c indicates measurement

at the free surface. For irrotational flow (29) becomes

at (az/az) - (Vh) h- . (30)

Equation (30) represents the free surface kinematic boundary condition.

Substituting (25) and (26) into (30),

-dexpLlX - n lj
f-indBkK (i I- -ffL I=InJexpli(* - ntkn- '  II'kn pL "J kn u ,,

+ k-k dA(k,n)dB(kl,n ) exp[kc]exp{i[(+k (n + n )t]}knk n 1 1 1 - 1

(31)

The exponential term in (31) involving the surface slope jklJ can be

expanded in a Taylor series around c = 0 such that

exp[Ik] = 1 + jkl + {kJ + ... I-j Jkl] + ... + R. (32)

The convergence of the series for gravity waves can be determined by

noting that the maximum steepness a gravity wave can have before it

breaks is .142. This value was determined by Stokes (1880), and accord-

ing to Kinsman (1965), it may be taken as an established value. In terms

of wave slope, the maximum value is one half the maximum steepness, or
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.071. Terminating (32) after only two terms results in a maximum error

R

1 2

R "I-.071) exp(.071) = .003 . (33)

This error is negligible.

For capillary waves, Crapper (1957) found that the maximum steep-

ness can be .730. The maximum slope is therefore .365. The maximum

error if only the first two terms of (32) are used is then

1 2
R = .365) exp(.365) = .096 . (34)

If the first three terms are used,

3

R = (1/6)(.365) exp(.365) = .012 . (35)

Although these errors are lar.ger +han +hat for gravit waves they are

still small.

Using the series expansion for exp[jk ~] truncated after the first

three terms, the relationship between dA(k,n) and dB(k,n) is found by

successive approximations. Details of the operation, following the

method developed by Huang (1971) in his second order study of Stokes

drift in a deep water random gravity wave field, are in Appendix A. To

the third order the relationship is

in (k - k )
dA(k,n) = -1  dB(k,n) + i (n - n)dB(k - k ,n - n )

f (n - n - n2)

dB(kl,n ) + i k k 1  k + k - k
-n122 [2 1 t
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(kk(k - k )(k - k ).(k - k - k2)*(k - kI  - k - - -
Ik -k |1k -k, - kI

- -1- 1 k 1  21

dB(k - k1 - k2, n-ni - n2)dB(kl,nl)dB(k 2, n2 ) (36)

A dynamic boundary condition on the free surface is imposed by the

requirement that the pressure on the two sides of the surface differ only

as a result of surface tension. From Bernoulli's non-linear equation,

the pressure in the water at the free surface is given by

2

-+ g + (at/t) + i ) = . (37)

The difference in pressure resulting from the surface tension can be

written as

P Pa - y(Vhc)l + (Vh) ]2-(3/2) (38)

where the second term on the right represents the contribution from the

surface tension. As in the linearized equations, the atmospheric pres-

sure is assumed to be constant. If the free surface = 0 is taken as

a reference level at which p = 0, then Pa = 0 since the surface tension

component vanishes. The resulting dynamical free surface boundary con-

straints on the wave motion are

2 - 2 2 (h
g = -(a/9t) - 4(V ) + y(Vh;)[1 + (Vh()2]-( ) (39)
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1.3 MATHEMATICAL DERIVATION AND PHYSICS OF THE

DISPERSIVE RELATIONSHIP

It has been stated that the dispersive relationship is one particular

property of gravity and capillary waves relating wave number and frequency

and that several investigators use the relationship in a form derived from

linear theory for a single wave. The present analysis describes the mean

deviation and the scattering from the simple dispersion for the more real-

istic random, non-linearly interacting waves. The analytical derivation

makes use of the full non-linear equations for a capillary and gravity

surface random wave field and is an extension of the study by Huang (1972)

on gravity waves.

The free surface dynamical boundary constraints yield an identity

from which the dispersion for a single wave train was found. They also

provide a corresponding relation for a random wave field. Looking at

(39), the term raised to the -3/2 power can be expanded into the binomial

series

2 -3/2 2 4
1 + (h) ] = 1- - (3/2)(vh) + (15/8)(vh) +

+ [-(3/2) - + ][-(3/2) - j + 2] ... [-(3/2) - 1] (-3/2)

(Vhe)2  + ... + R . (40)

Equation (40) is valid for

l(Vh) 1 . (41)
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This condition is always satisfied in light of the maximum wave slopes

permitted before breaking occurs. Truncating (40) after the first two

terms yields a maximum error

4
R = (15/8)(vhc) . (42)

Since the maximum gradient is small in order to retain the wave stability,

the maximum error after a two term truncation is minute.

Substituting the first two terms of the binomial series (40) and the

first three terms of the Taylor series (32) in (39) and then using (25)

and (26) to substitute for and ;, an expression is obtained in terms

of dA(k,n) and dB(k,n) such that

kngdB(k,n)exp[i(k.x-nt)] = in[1l + k + Ikl ]dA(k,n)exp[i(k-x nt)]

1 kn 2
Sknkn 1 IkllkI - k'k)[l + (Ik + Ik1)

dA(k,n)dA(kln )exp{i[(k + kl)-x - (n + n)t]}

-fkli dB(k,n)exp[i(k-x - nt)] - y(3/2)

Snknn2 Ikl k1 k2dB(k ,n)dB(k1,n)dB(k 2 n2)

-1 1 -2 2

(43)



23

Substitution of (36) in (43) results in the non-linear third order dis-

persive relationship for random gravity and capillary waves

g + Yl 2  n2 k I fdB(k1 ,n)expi(k.x - n t)]

- f f f f dB(k ,nl)dB(k 2n )exp{i[(k + k )
-1-1-2-2

*x-(n + n )t]} - f dB(k k ,n n
S n2 k n. k2 n2 3 2 1 2

dB(k ,n )exp[i(k *x - n t)] (44)
2 21 1

where

2 (k + k + kk
n- -1 2N - JIM1kll + k n + ) 2 I r-t7()

n(n + n + n2) + 2k )- (k + k + k )(k + k )(k + k)k

f2 Ik + k + k1 - k + k k+ 2 -2 -

(k + k )-k kk
+ Jk n(n + n ) -- n2kj 1 - i

(ki1 + k)nn + [ ( + k )k (k + k ) k
(1k1 + 1k 1)nn + 1 2 nn1 2 k+k 1

+ (3/2)yl2k k *k (46)-- 1.-2

Details of the mathematics of the derivation are given in Appendix B.
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Equation (44) is the most general form of the dispersive relation-

ship for a random sea surface through third order interactions. It is a

function of both space and time. If all the non-linear terms on the

right hand side are neglected, and if only a single wave train is con-

sidered, the frequently used simple relationship (12) is recovered.

The deviation from the linear theory is given by the right hand side

of (44). The mean deviation is easily computed by taking the mean of

each term of the deviation. The first term represents a random scatter-

ing of the surface elevation and has a zero mean.

It is seen from (27) that

dB(k,n) = dB*(-k,-n) , (48)

The mean Fourier-Stieltjes components in the third term can then be

written as

dB(k - k ,n - n )dB(k ,n ) = dB(k - k ,n - n )dB*(-k ,-n )
-1 2 1 2 2 2 -1 -2 1 2 -2 2

(49)

and from (28)

dB(k - k2 ,n1 - n2)dB*(-k 2 ,-n2) X(k,n 2 )dk2dn if k = n = 0

otherwise. (50)
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If k = n 1 0, then (47) becomes zero. The mean of this third term

therefore vanishes.

Equations (48) and (28) can be used to determine the mean of the

second term. Thus,

dB(k ,nl)dB*(-k ,-n) =X(kn )dkdn if k + k n + =

-1 2 f 1 1 1 f 1 +2

otherwise . (51)

Substituting K1 = -k2 , n = -n2 into (46) yields a non-zero term

k 2 k(k - k )(k- k).k] (k.+k 1 )k n(n + n)k
2 .TF [k + 2k )*k - ~+ n(n + n

2 21- -

2 2 k -f ( k + Ik,)nn1

(k - k ).k (k - k ) k 3k2 (52)
1+ -~ 1 1 -1 nn - ) k . (52)

It is seen that the mean of the second term is therefore non-zero.

The resulting mean non-linear dispersion is

2

g Yjk 2  I f (k,n)dk dn. (53)-Tk =  kin1 2x 1
k

1 )dk 1 "

The right hand side of (53) represents the mean non-linear deviation

from linear theory in terms of the spectral function. This expression

is greatly simplified if only unidirectional waves are considered.

Equation (23) reduces to
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S+ yk 2  [3n 2k + nn (k + k ) - (3/2)yk2 k 2]

11

X(k ,n )dk dn . (54)

Since the spectral function is even and n1 , k are odd functions, (54)

becomes

g + yk 2  n l [nnlk1 - (3/2)yk2k2]X(kl,nl)dkdn . (55)

The mean squared random error is a measure of the variability of

the random scattering about the mean deviation. The right hand side of

(44) represents the deviation e from the linear theory. The mean of its

square -2, is the mean squared random error- The crmnittAtin. nf 2 +.t

the third order requires that we consider only the first term on the

right hand side of (44) as inclusion of the other terms will yield high-

er than third order results. Thus,

S= fdB(k ,n)exp[i(k - nt) . (56)1nt)]

The mean squared random error is arrived at by once again using (48)

and (28) to compute the mean of the square of (56). The resulting ex-

pression is

S f f 2X(k ,n )dk dn . (57)

For unidirectional waves, (57) reduces to

= n2k n inX(kl,nl)dk dn . (58)
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Anticipating the results of the next section, the behavior of the

mean deviation and root mean squared random error can be-schematically

visualized as in Figure 5. The ratio of the linear dispersion to the

non-linear dispersion is plotted against the wave frequency. It is seen

that as n increases from the low frequency gravity waves through the

high frequency capillary waves, the mean deviation and random scatter-

ing first increase in magnitude and then decrease in magnitude. The in-

flection points of the curves are found in the transition zone between

the gravity and capillary wave ranges.

The reversal of the mean effects can be seen by looking at the term

in brackets in (55). The first component dominates in the gravity wave

range since in this range the square of the wave number is much less than

the wave number itself. In the capillary wave range, however, the wave

number is large so that its square is even larger. The second term

therefore dominates in this range. Since the two terms are of opposite

sign, their effects will be opposite.

The random fluctuations are a function of the quasi-Eulerian veloc-

ity components. The schematic depiction shows that these random fluc-

tuations are maximized in the transition zone between the gravity and

capillary waves. This curve is based in part on measurements of veloc-

ity spectra by Yefimov and Khristoforov (op.cit.). These authors show

that in the gravity wave range the random, turbulent type velocity com-

ponents become increasingly stronger as the transition zone is approached.

No measurements of velocity spectra have been made in the capillary wave

range, but Phillips (1969) discusses integrated frequency spectra in this
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range. He states that the maximum spectral values o'ccur in the lowest

frequencies, or those frequencies near the transition zone. At higher

frequencies, the spectral values decrease rapidly because of the in-

creased effect of viscous dissipation of the capillary waves. Thus, as

the frequency increases, the wave energy becomes less and therefore the

velocity components decrease in magnitude.

The dispersion by definition relates the velocity at which a wave

travels to the wave length. This has the effect of sorting the waves

as they travel. For simplicity, consider three gravity waves of dif-

fering lengths propagating unidirectionally from a point xo at time to.

Since the waves are traveling at different speeds, at a later time t i

the fastest wave will at at xi, the next fastest at x2<x1 , and the slow-

est at x <x <x . It is therefore seen that even though the three waves

started traveling from the same point at the same time, they will be

sorted at ti.

The linear dispersion (11) shows that the square of the phase speed

is indirectly proportional to the wave number when the wave is restored

to the mean free surface level by gravity and directly proportional to

the wave number when the wave is restored by surface tension. The ef-

fect of non-linear wave-wave interactions can be readily seen by look-

ing at the simplified case of unidirectional waves. Using (1), the mean

non-linear dispersion (55) can be rewritten as

2 = -- + yk + k/  -n k - (3/2)ykkJ]X(k ,n )dk dnt
k1k1n
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Sco + c -
k n n k X(kln )dk dn - (3/2) Yk

O 0

f k 2 X(k ,n )dk dn (59)

where co represents the linear dispersion. If interactions did not oc-

cur, c2 would be coincident with c2 and the linear theory would suffice.

Physically, then, the third order mean non-linearities behave in the

sense of a de'viation from the linear dispersion. They thus affect the

dispersion by changing the phase speed co that results from linear theory.

Looking at the mean deviation, the first integral on the right hand

side of (59) is an expression for the mean random ocean quasi-Eulerian

velocity as derived by Phillips (1960b). This velocity is the mean of

the horizontal component of the fluid velocity at the free surface for

a fixed point (x,y). It is a quasi-Eulerian quantity in that it is meas-

ured at a fixed point on the projection of the free surface, but the

vertical coordinate is allowed to move up and down with the free sur-

face. A similar formula was derived by Longuet-Higgins and Phillips

(1962) from a generalization of the interactions between two waves. The

difference between the two expressions is a factor of two. Phillips

(1960b), however, showed that the mean Eulerian velocity is one-half the

Stokes drift. The Stokes drift is the mean velocity following a fluid

particle and is by definition a Lagrangian property. Since the present

study is based on an Eulerian reference frame, the first integral appears

reasonable.
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The second integral in (59) represents the mean square of the ratio

of the surface elevation to the wave length. It is multiplied by the

surface tension and is thus important in the capillary wave range. This

term also appears reasonable in view of Crapper's (op.cit.) exact solu-

.tion to the finite amplitude non-linear single capillary wave problem.

He showed that the square of the phase speed is influenced, as in the

present study, by a term proportional to the square of the ratio of the

surface elevation to the wave length.
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1.4 QUANTITATIVE ESTIMATES OF THE NON-LINEAR DISPERSION

The effect of the mean non-linear deviation can be _quantitatively

assessed if the spectral function is known. An order of magnitude esti-

mate can be obtained by using the equilibrium range spectrum. For grav-

ity waves assume the equilibrium spectrum given by Phillips (1958).

2 2

X(k,n) = 6(k - -) (60)
n5  9.

for

k<<k = (g/y) 2, n<<n = (4g3/y)l/4 (61)

where a is a universal constant and 6 is the Dirac delta function. The

constant 8 has been measured experimentally by Pierson (1960), Burling

(1959) and Longuet-Higgins et al. (op.cit.). An average value is 1.2 x
-2

10-2 . For capillary waves Phillips (1969) gave an equilibrium spectrum

based on dimensional considerations such that

X(k,n) = /3 (k3 - n2

for

k <<k<<k n <<n<<n (63)
Y v Y v

where a" is another constant, and k and n are the cut-off wave number

and frequency, respectively, at which viscous effects dominate. Cox

(1958) measured a constant for frequency spectra of the wave slope.

Phillips (1969) showed that this constant could be used to approximate

8' as 10-2 . Wu (1972), however, showed that this value may be in error

by a factor of two.
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In the gravity wave range the surface tension is unimportant com-

pared to gravity so that after substituting (60) into (59)

C2  C2 q CBq 2 / n-4k dk dn (64)
o C2 kl1 n 1

where

n = gk (65)

Using (65) and integrating (64) over the gravity wave range and noting

that.

c2 = g/k (66)

then

2 = ,.2F cBsg ]-oL ' 2 ]
oL con 1

S Co [1 + Bn/n 1] . (67)

Equation (67) shows that the mean phase speed of interacting waves will

be less than that predicted by linear theory, and that the difference

will depend on the ratio n/n .

Examining this result in terms of wave number and frequency, sub-

stitute (1) and.(66) into (67) and rearrange so that

gk = n2[l + (Bn/n 1) 1  (68)

Expanding the multiplier of n2 in a truncated binomial series,

[1 + (Bn/nl)]' = 1 - an/n1 . (69)
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Hence

gk = n2(1 - ) . (70)
1

The error in (69) is negligible since n and n are of the same order and

B is small. Equation (70) clearly shows that for interacting gravity

waves, an increase in wave number results from an increase in frequency

below that predicted by linear theory. Furthermore, the effect of the

interactions increases as the ratio n/n1 increases. This result agrees

with Huang (1972) and is consistent with Stokes' (1847) theoretical

solution for gravity waves. Additionally, the result agrees with the

observed data discussed earlier.

In the capillary wave range the gravity terms are unimportant com-

pared to the surface tension terms so that after substituting (62) into

(59),

2= 2 2 f -/3 ,4/3 5/3 7/3
C 2 =c{1 + ( /Co) k I[cy 2/3n - (3/2)ys/ kn k1]

dk dn } (71)

where

2- 3
n = yk . (72)

Using (72) and integrating (71) over the capillary wave range,

2 -2 113 1/3c = c2 {1 - (8/Co) [(3/2)ykln n - 3cy n1  } . (73)

The mean effect of the interactions on the phase speed can be assessed

after the sign of
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(3/2)ykln - 3cy 1/3 n 3 (74)

is determined. Using (1), dividing by 3y and rearranging (74) is re-

written as

1/31 -I n
in In 1 - 2/3 2  (75)

y

The capillary wave range in which the equilibrium spectrum is valid

begins at n = 100 sec- as shown by Phillips (1969) and at k = 3.6 cm-

as shown by Wu (op.cit.). The upper limit to the range is determined by

the energy dissipation resulting from molecular viscosity. Wu (op.cit.)

showed that the cut-off wave number k 13 . cm K The corresponding

cut-off frequency n 1,000 sec - . Additionally, nI is the lower bound

of the equilibrium range so that n1 is always less than or equal to n.

Using these limiting values, the first term in (75) varies from .50 to

.35 as ni increases and the second term varies from .44 to .34 as n in-

creases. Equation (75) and therefore (74) is thus positive. It should

be noted, however, that as the viscous dissipation of the wave energy

becomes more pronounced, i.e., at the upper limits of the range for which

the equilibrium spectrum is valid, the difference between the two terms

becomes smaller and smaller. Since (74) is positive, the square of the

phase speed c2 in (73) will be less than that for the situation in which

no interactions are involved, but.only by a small amount.

In terms of wave number and frequency, for capillary waves

co = yk . (76)
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Substituting (1) and (76) into (73) and rearranging,

yk3[l1 - (3/2)ln nl] + y /3k(38'nn ) - n = 0 . (77)

This equation is a cubic expression of y 1/3k and can be solved in terms

of n by using the formulas and procedures analogous to those outlined in

Appendix C. Cubing the solution results in

3 1/2 2/3 1/2 1/3 1/2 1/3 1/2 2/3
yk3 = 2r + 3[(r + D )1/22/3(r D1/2) +(r + D )/2/3 (r D/2 2/3]

(78)

where

r n2 [1- (3/2)ln n (79)

and

D = 8 3n3n [1 - (3/2)8'1n n l] + n E1 - (3/2)B'1n nl] 2 . (80)

Since B' is such a small quantity, the first term in (80) is negligible

compared to the second term. Thus, D is-approximated by

D [= l1 - (3/2)8Iln n1  . (81)

Rewriting (78) and using the approximated value for D,

3 2 1/3 1/2 1/3 1/2 1/3yk3  2r + 3(r2 - D) /3[(r +D/2)1/3 + (r- D 1/2)1/ 3

= n2[l - (3/2)'In nl - 3B'nn1/3 [1 - (3/2)B'ln nl] "1

(r + 01/2 1/3 + (r 01/2 1/3[(r + ) + (r- ) J
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Sn 2 [1 - (3/2)-ln n - - 38ns/3n [1- (3/2)'In n ]- /3

Sn 2{[ - (3/2)8'ln n ] i - 3B'(n/n) /3[ - (3/2)ln n 4/3

(82)

Expanding the terms in brackets into binomial series which are truncated

so that only terms of the order of B' or larger are retained,

yk 3  n2 [l + (3a-/2)In n1  - 3B(n 1 /n ) 1/3 (83)

The error from the truncation of the binomial series is of the order of

" . This is negligible compared to the other terms in (83). It has al-

ready been ascertained that

1 1/3
inn - (n/n) > 0 (84)

since in the capillary wave range the logarithmicpart will always be

greater than unity while the ratio will always be less than or equal to

unity. Therefore, from (83) it is seen that if the frequency is increased,

the non-linear interactions will have the mean effect of increasing the

wave number above that which is predicted by linear theory. Furthermore,

the effect becomes greater as n1 and the ratio n/n1 increase.

The mean squared random scattering defined by (58) can be inter-

preted as a measure of the random deviation about the mean scattering.

It is analogous to a variance in the statistical sense. Its square root

is analogous to a standard deviation. A large value indicates a wide

spread of data points about the mean while a small value indicates a

close cluster of points about the mean.
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Equation (58) can be investigated by looking at the integral func-

tion. This term represents the mean squared surface velocity spectrum,

where'the velocity is equivalent to the quasi-Eulerian velocity discussed

earlier in conjunction with the mean scattering. The root mean squared
1/2

error, (E~) , then represents a mean of the individually unpredictable

random variations of the quasi-Eulerian velocity data points about the

mean quasi-Eulerian velocity multiplied by the constant n.

The unidirectional non-linear effect on the square of the phase

speed can be represented in terms of the mean deviation from linear

theory plus the random scattering. Combining the square root of (58)

with (55) and then substituting (1) into the combination,

C = C {+ ( k n X(kl,nl)dkdn, - (3/2)1k
1 ICO

S k 2X(k ,nl)dk dn + (c/c) n X(k ,nl)dk dn 1/2 (85)
kn 1 1n

Quantitatively, all components of (85) except the last one, Co-2(E2)1/2

have been determined from the equilibrium spectral values.

In the gravity wave range the integral function in this last com-

ponent becomes, after using (60) and (65)

g2f n 3 dn1 . (86)

Thus, for gravity waves after integrating and noting (1) and (66),

c _2(7) 12 = + (c/c 2)(8/2) /2(g/n1 )0 0
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S (8/2)1/2(n/n 1) (87)

Combining (87) with (67),

C2 [ + 1(n/n1) + (a/2)1/2(n/n )J (88)

Since B is such a small quantity, the square root of 8 is an order of

magnitude greater than 6. It is seen from (88), then, that the random

scattering in the gravity wave range has a far greater effect on the

phase speed than the mean deviation. Physically, this large scattering

arises from quasi-Eulerian velocity components which have a small mean

but large fluctuations.

In terms of wave number and frequency, (1) and (67) are substituted

into (88) to yield

n2 - gk[l + B(n/n ) ± (B/2)1/2(n/n1) ]  . (89)

Once again using a truncated binomial series,

gk = n2 [l - B(nlnl) t (/2) 1/2(n/n )] . (90)

As in the expression for the phase speed (88), the random scattering has

a greater effect than the mean deviation.

In the capillary wave range the integral function in the last com-

ponent of (80) becomes, after using (62) and (72),

v2/3 nl- 1/3dn . (91)

Thus, for capillary waves
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C -2(-7)1/2= + (C/C2 )y1/3(3o-/2)1/2n 1/3 (92)

Combining (92) with (73),

C2 = C2{1 - (B'/c2)[(3/2ykln n1 - 3cy 1/3n1 1/3]

± (c/c2_)(3V/2)1/2y 1/3n1/3} (93)

It is seen from (93) that the large random fluctuations of the quasi-

Eulerian velocity components cause the random scattering to have a

greater effect on the phase speed than the mean deviation for capillary

waves as well as for gravity waves.

In terms of wave number and frequency, (1) and (72) are substituted

into (93) to yield, after rearranging,

yk3 [1 - (3/2)B'In nl] + y(1/3)k{[3v- + (3a'/2)1/2]nn (1/3) }

- n2 = 0 . (94)

Equation (94) differs from (77) only in the coefficient of y1/3k. Fol-

lowing the development of (83), it is readily seen that the cube of the

solution of (94) for y1/3k is

yk3 = n2{l + (38'/2)ln n1  - (n /n)1/ 3 38' + (38'/2) 1/2]} . (95)

As in the expression for the phase speed (93), the random scattering has

a greater effect than the mean deviation.

The non-linear effects on the phase speed for the gravity and capil-

lary wave range is shown in Figure 6 and Figure 7. The ratio c2/C 2 is
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is plotted against n/ni for gravity waves in Figure 6 and for capillary

waves in Figure 7. From (88), in the gravity wave range

co/c2  = [1 + B(n/nl) + (8/2)1/2(n/n )]-1

= 1 - B(n/n ) + (B/2) 1/2(n/nl) (96)

after using the truncated binomial series. In the capillary wave range,

multiplying (76) by k2 gives

Yk3 = ck2  . (97)

Applying (97) and (1) to (95) and rearranging,

2 2
co/c = 1 + (38'/2)ln nI - (n /n)1/ 3 [38' + (3B'/2)1/ 2] . (98)

In terms of the relationship between wave number and frequency,

Figure 8 is a gravity wave representation and Figure 9 is a capillary
2 2 2wave representation of no/n 2 against n/n1 where no is the linear squared

frequency. For gravity waves

2
no = gk (99)

and for capillary waves

no = yk 3  
(100)

Figure 8 is determined from (90) and Figure 9 is determined from (95).

The mean deviation as shown in Figure 6 and Figure 8 decreases in

the gravity wave range as n/n1 increases. In the capillary wave range

the mean deviation as shown in Figure 7 and Figure 9 increases as n/ni
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increases. This reversal can be explained by looking at the integrated

mean quasi-Eulerian velocity in (59). This term is directly proportional

to n and inversely proportional to n, in the gravity wave range as shown

in (67). For capillary waves, however, this term is directly proportional

to both n and n11/3 as shown in (77). A change in n/n1 will therefore

cause the velocity in the two wave ranges to change in opposite direc-

tions.

The random scattering for gravity waves as depicted in Figure 6

and Figure 8 increases as n/n1 increases. For capillary waves, however,

depicted in Figure 7 and Figure 9, the scatter decreases as n/n1 increases.

These results are explained by considering the integrated quasi-Eulerian

velocity spectra from which the random errors are -derived. In the grav-

ity wave range the cnPr+v-r is computed from the sque root of the in-

tegral function in (58) after using (60). Thus,

[k n2X(k ,n )dk dn ]1/2 = (B/2)1/2(g/n1 ) (101)

Equation (16\)) shows that the velocity increases as ni decreases. For

a constant n, therefore, the velocity will increase as the ratio n/n1

increases. This causes the increasing scatter in Figure 6 and Figure 8.

For capillary waves, (58) and (62) yield

k n2X(k ,nl)dk dnl]1/ 2 = yl/ 3(38'/2) 1/2n1 1/3 (102)

so that the velocity decreases as n1 decreases. Thus, for a constant

n, the scatter will decrease as n/n1 increase6 as reflected in Figure 7

and Figure 9.
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APPENDICES



Appendix A

Third Order Relationship Between dA(k,n) and dB(k,n)
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Rewriting (31)

1$ -indB(k,n)exp[i(k.x - nt)] = IkdA(k,n)exp[jkcexp[i(kx - nt)]kn kn A e] -

+ n k.k dA(k,n)dB(k ,nj)exp[jkic]exp{i[(k+k ).x - (n+n )t]}

(31)

Substituting a series expansion for exp[lkl ], and using (26),

kn indB(k,n)exp[i(k.x-nt)] = kIIkdA(k,n)[1 + kk + -1kl22]exp[i( x-nt)]

+ knkn kkdA(k,n)dB(kl,n )[1 + Ikc]exp

{if(k+k ).x - (n+ni)t)]}

fjikldA(k,n)exp[i(k'x nt)]+ I  f k 2dA(k,n)dB(k n )kn knk n 1n

exp{i[(k+k).x .- (n+n )t] + 1 fknk n n k13dA(k,n)dB(k1 ,n,)

dB(2 n 2)exp{i[(k+k +k2 )x - (n+nl+n2)t + knk n t
-11

dA(k,n)dB(k1 ,n )exp{i[(k+k ).x - (n+n )t]}

+ fff f Ikflkk dA(k,n)dB(k ,n )dB(k ,n )
knklnk2 2 - - -1 1 2 2

exp{i[(k+k+k 2 ).x - (n+n +n2)t]} - (A-1)
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For the first order let

k. = no no . (A-2)

For the second order let

k + ki = kO ' n + n = no . (A-3)

For the third order let

k +. i 1 + k2 =k n + nI + n = nO. . (A-4)
~1 ~2 -0 1 2 0

Then, after substituting (A-2), (A-3) and (A-4) into (A-1),

on -in dB(k ,n )exp[i(k .x-not)] = ono ko dA(ko,no)exp[i(ko.-not)]
S-o 0L)

k 0 nI lko-k12dA(ko -k ,no-nl)dB(kl,nl)exp[i(ko x-not)]

+ 1- I / / Ik-k-k 1 3dA(k-k-k ,n -n-n2)

dA(k o-kl,n o-nl)dB(k ,n )exp[i(k x-not)] + Iono f1 2n2f

ko -k-k 2(ko-kl-k 2)'kjdA(ko-k-k 2,no -n -n )

dB(kl,nl)dB(k ,n )exp[i(k *x-n t)] . (A-5)
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Since each component of (A-5) is integrated over (k ,no), only the inte-

grands of the integration over (ko,no) need to be considered. After

dropping the zero subscripts, these integrands in (A-5) can be rearranged

so that

dA(k,n) = in dB(k,n) - k-k)] 1dA(k-k n-n

d 1 1 -1 1-2 2 - 1 2 - 1 - 1 1

F dA k-k ndB kFnI I

dBk ff f k-k kf 13+ i -k (n-n21k(k-kl
ik n k 2n 2 - ' 2 ' -

T dA(k-k -k2 ,n-n -n )dB(ktnl)dB(k21n) (A-6)

Using successive approximations, to the first order

dA(k,n) = - dB(k.n) (A-7)

To the second order, after substituting (A-7) for dA(k-k ,n-n ) in (A-6),

dA(k,n) - i dB(k n)- +nk .(k-k )]i(n-n

dB(k-k ,n-n )]dB(k ,n,)

in dBkn) k(k-k )
Sn +kn i lk-k1 (n-n )dB(k-k ,n-n )

dB(k ,n1) (A-8)
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Continuing the approximation, substitution.of (A-8) into (A-6) yields

the third order relationship

dA(k,n) = - dB(kn) - kin [k-k dB(k-k n-n)

(k-k )(k-k -k )
+ I (k-k k-k k (n-n -n )dB(k-k 2
~ n 2 ~l kt/l 1 2 -1

- 1 kn2 - -1 -2

_ i(n-n -n )
+ lk-k-k2 j(k-k -k2) -k ] TT -- 2

dB(k-k -k2 ,n-n-n 2) dB(k 1 ,n)dB(k ,n2) . (A-9)

Rearranging

dA~k~n)kin k(k-k)
dA(k,n) = - dB(k,n) + i k k-k (n-nl)dB(k-k ,n-n1)

dB(kn) + f (n-n-nn) +k -k2)(k-k -k )dB(k,,n ) + kln 1 k2n2 I l (k+k1 -2 -- 1 -2

k'(k-k )(k-k )"(k-k -k )

k-k k-k -k dB(k-k -k ,n-n -n2
dB(k ,n)dB(kn) -1-2 A-2)

dB(k1 ,n )dB(k2 n2 ) (A-10)
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Appendix B

Third Order Expansion of the Dispersive Relationship
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Rewriting (39)

9 = - (a/2t) + y(v2C)[l + (vb )2]-(3/2) (39)

Expanding the term raised to the -3/2 power in a binomial series,

S -(a/at) - -(V4) + y(v)[l - (3/2)(Vh )2 ]  (B-1)

Using (25) and (26) to substitute for € and s,

kn gdB(k,n)exp[i(k.x - nt)] n indA(k,n)exp[Jkj]exp[i(k x - nt)]

2 f knn (lk I - k'kl)dA(k,n)dA(k1,n1)exp[(IkI + IkI)c]

exp{i[(k+k )*x - (n+n )t]} - ykn Ikl2dB(k,n)exp[i(kx - nt)]

- y(3/2) fknk n k f 1 2k k2dB(k,n)dB(k,,n )dB(k2,n.)
- -1 1-2 2

exp{i[(k+k +k )*x - (n+n +n2)tl]} (B-2)

Expanding the surface slope exponential functions into Taylor series

around C=0,

nfgdB(kn)exp[i(k.x-nt)] = n in[l+jklI + Ikl22]dA(k,n)
kn t] n(iklk1k k z)l1+(ikl+I ]k,

exp[i(k-x - nt)]- II! kn. k (.
2 knk n1 j-1 -1l i
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dA( ,n)dA(k15nl)exp{i[(k+kdq)* -. (n+n1)t]}

y ff jkj2dB(k,n)exp[i(k-x-nt)] -y(3/2) 1 1 2 kl

dB(k,n)dB(kl,nl)dB(k 2 n 2)exp{i[(k+k 1+k 2 )-x -(n+n 1+n 2)tDl

(B-3)

Rearranging,

ff gd~~~x~~--t] if d~~~x~~-xn) f
kn gd~~~x~~~-tJ=kn inAknnxk~kxn) + n~

inItIdA(k,n)dB(kl,nl)expfi[(k+k1 )* x -(n+n )tli+- '
-11 1 knk nlk.n.

injkI2dA(k,n)dB(k1 ,nl)dB(k2 ,n )exp{i[(k+k +k2 )-x -(n+n +n2)]

~~ CIIk!l I dA(k,n)dA(k1 ,n,)exp{i[(k+k~ )-x -(n+n 1)]

1 ff ~ ~(I~[ ~~ 1 (f + f1 I)dA( ,n)dA( ,,nj)
- Tknk 12 k2 +

dB(k2 .n 2 )exp{i[(k+k 1+k2 * (n+n 1+n2 )tli ~y ffItI2

-dB(k,n)exp[i(k-x-nt)] - y(3/2') f f f I .1 k dB(k,n)
-n -1 1-l2 n2 1

dB(k 1 ,)dB(k 2 .n 2)exp{iE(k+k 1+k 2)-x -(n+n 1+n 2)t]} (B-4)
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Numbering each term on the right hand side of (B-4) consecutively from

I to VII and substituting for dA(k,n) from (36), to third order

I= kT n dB(k,n)exp[i(k.x - nt)] - I fn(n - nl)
kn TF I n| - I

n(n-n1 -n2)

dB(k-kl,n-nl )dB(k ,n )exp[i(k-x - nt)] - n n I n 2. knkinln 2 l

k(k-k )(k-k 1 )"(k-k -k 2)
- ,- ( k-k I -2S(k+kk).(kkk - 1 ~1 .2. . .

dB(k-k -k2 ,n-nl-n 2)dB(kl,nl)dB(k2,n2)exp[i(k.x -nt)] . (B-5)

For second order let

k- k = k , n - n an' . (B-6)

For third order let

k -k - k = k', n - n - n2 =n' . (B-7)
- -1 -2 1 2

Then, after substituting (B-6) and (B-7) into (B-5) and dropping the

primes,

S n2  k'(k+k )

kn dB(k,n)exp[i(k-x - nt)] - -knknlkk+k n(n+n)
- knk n kllk+k1 (+)

dB(k,n)dB(kl ,n)exp{i[(k+k )*x - (n+nl)t]}

fff f f f (n+n1+n2)n (k+k+k + )(k+k2

" knk n k n2 1k+k +k2i 2 (k+2k )k - ik+k2
1 1-2 2 .1 ~ 21
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(k+k )-k]dB(k,n)dB(kl,nl)dB(k ,n )exp{i[(k+k +k2)*x - (n+n +n )t]}

(B-8)

Looking at the second term on the right hand side of (B-4), after using

(36)

II =knk n2dB(k,n)dB(k ,n )exp{i[(k+k )-x - (n+n )t]}

kn/ I / /n 1( 1  1

knk fn jk-k I n(n-n )dB(k-k ,n-n )dB(k,n )
- n1 k2 2 k-k11

dB(k 2 ,n2 )exp{i[(k+k2)*x - (n+n2)t]} (B-9)

For the third order let

k - k = k n - n = n (B-10)

Then, after substituting (B-10) into (B-9) and dropping the primes,

II = /n n2dB(k,n)dB(k ,n )exp{i[(k+k )-x - (n+n )t]}
-11

II I / (k+k )knk n kfn if n(n+n )dB(k,n)dB(k ,n )dB(k ,n )
knkexp{i1  k2  - (n+n+n)t]} (B-2 2

exp{i[(k+k +k )x - (n+n +n )t]) (B-l)
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Using (36), the third term on the right hand _side of (B-4) becomes

= 1 fn 2f n2lkldB(k,n)dB(k ,n )dB(k ,n )exp{i[(k+k +k ).x2 knkn 1  2n 2  -2 -1 -2.

- (n+n +n2)t]} (B-12)

and the fourth term becomes

IV 1 = k I 1 k1 I- kk ] - -ndB(k,n) + i k kIV 2 knkn 1 n ~ - k n -7
2 k2 k 2-- 11

(n-n 2 )dB(k-k,n-n2)dB(k 2 ,n2 ) - -dB(k 1 ,nl)

+ 2 8 $ "(-2 ) (nl-n 2)dB(k -k2 ,nl-n2)dB(k ,n2)

exp{i"(k+k )-x - (n+n )t]} (B-13)

Rearranging,

IV 2 knk nL -lklk nn dB(k,n)dB(k,nl)exp{i[(k+k

- (n+n )t] - 1 kk k *(k -k )
S(n+n)t] - 2 knk 1 n 12 n2  -kll 1-2

n(n -n2)dB(k,n)dB(k -k ,n -n 2)dB(k ,n2)exp{i[(k+k ),x

-(n+n )t] - 1 /ff / I k'k k*(k-k)Sknknkn 1- J k-k2 n-n
-1 1-2 2 k7 -TF n (n-n
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dB(k-k 2,n-n2 )dB(k 1 ,nl)dB(k2,n2)exp{i[(k+k ).x- (n+n )t]}

(B-14)

In the third term on the right side of (B-14), let

k - k = k', n n = n . (8-15)

Then, after substituting (B-15) into (B-14) and dropping the primes,

1 ffffi kk 1IV = knkn1 -k lik nn 1dB(k,n)dB(k ,n1)exp{i[(k+k )'x

kk k (k -k )
2 knk n k 2n2 - klkI Ik -kT 1

n(n -n 2)dB(k,n)dB(k -k2,n -n2 )dB(k2,n2)exp{i[(k+k )-x

l (k+k )'k (k+k)
-(n+n 1 )t]} 1 knk / / 1 - +k 2 )k-

2 knk n 1kn2 L kkk j T T

(nn )dB(k,n)dB(k1 ,n1 )dB(k 2 ,n2)exp{i[(k+k +k )*x

- (n+nl+n2)t]} (B-16)

Substituting (36) into the fifth term on the right hand side of

(8-4) and rearranging,

2 knk~n k n (

n B k'dB(k n ) dB(k2,n2)exp{i[(k+kl+k )x - (n+nl+n )t]}
1
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2 knknl k2 n 2[1 T-kllk (Ik +Ik I)nn dB(k,n)dB(k ,n)

dB(k ,n )exp{i[(k+k +k2)-x - (n+n +n2)t]} (B-17)

The dynamic boundary condition is now specified in terms of dB(k,n) so

that

kn gdB(k,n)exp[i(k-x-nt)] = I + II + III + IV + V + VI + VII

(B-18)

Equation (B-18) can be rearranged and then rewritten as

kn F(k,n; kl,nl; k2 ,n )dB(k,n)exp[i(kx - nt)] = 0 (B-19)

where

2  k'(k+k )
F(k,n;k2,; ) = - g y- ylk 2 + -+ [n n2  kkk n(n+n )+

k'k n(n+n +n2)

11 1-2 2 1 ~2

(- -ki )nn ]dB(k,,nl)exp[i(kl-X-nlt)] - f f f n(n+nl+n2)

(k+k +k )*(k+k )(k+k )*k

[(k+2k )-k Ik+k 2k11- 2
1

+ Ikl n(n+nl) - i n2.k - 1 -k Ikk (k + k I)nn

k+k i2 (kk l nn + (3/2)ylkl2k -k2T_____ -- 2 1
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dB(k ,n )dB(k ,n2 )exp{i[(k +k )-x - (P1+n )t]}

- 1 n 2  
1 - 7 k 1 1 k. -k n(n -n2)dB(k 1-k2 nl-n 2 )

dB(k ,n )exp[i(k .x - n1t)] (B-20)

Since dB(k,n) can be any function,

F(k,n; k1 ,n 1 ; k2 ,n2 ) = 0 (B-21)

Thus, after setting (B-20) to zero and rearranging terms, the third

order dispersive relationship can be written in the following form:

+ 2 f 2 k(k+k ) k1 k1
T + k k n ljkikk I1l n(n+n ) + (1 -

(n+n +n )
dB(k ,n )exp[i(kx - n t)] f- kf k+ 1 2

+ n(n+n) - - nn

(k+k +k )(k+k )(k+k ) k

(k+2k )-k

[T 1 e ik+k 2 i

(k+k kk (+k 2)k
+ 1 - kk I nn + yykt2 k*k

d2k2 d1 tkn I k1  - 2+2

dB(knl)dB(k 2,n )exp{i[(k +k )x - (n +n )t]}
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kik kr*(k -k )
Sknkn 2  ln|llkl2 Ik -k~2 n(n -n )dB(k-k2, n-n 2 )

dB(k 2 ,n 2)exp[i(kx - nt)] (B-22)
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2. Statistical properties of surface waves under non-uniform currents.

2.1 Introduction

Previous studies (Longuet-Higgins and Stewart, 1961; Huang et al,

1972; Phillips,. 1966) have shown that when waves encounter current,

wave characteristics undergo changes due to interactions between the

waves and the current.

In order to utilize the phenomenon of wave-curr'ent interactions as a

means of measuring current, it is desirable to first conduct a comprehensive

study of the effects of current on relevant statistical properties of

waves. This includes those of wave elevation, wave amplitude (peak),

zero crossing rate, number of maxima, velocity of zeros and specular

points, and other related quantities for both the one-dimensional and two-

dimensional wave systems. Those quantities that are most sensitive to

wave-current interactions and particularly suited for current measurement

by remote sensing devices will then be identified.

Work to date has been devoted to one dimensional wave systems only.

The effects of current on wave elevation, wave amplitude, zero crossing

rate, number of wave maxima, and velocity of zeros have been studied and

reported in the following.

2.2 Distribution of Wave Elevation

Both theoretical and field studies show that the surface elevation of

a random wave field is approximately Gaussian. That is, the probability

density function p(C) of surface elevation F, measured from mean sea

level is
2

S 1 exp[- ] (2.1)
V"2Ta
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in which a is the standard deviation of E which can be obtained from the

spectrum of surface elevation.

It was shown previously (Huang et al, 1972) that under the influence

of a steady non-uniform current, the frequency spectrum of a random

gravity wave field is given by

*(n) 44 (n)

[1 + (1 + 4Un 1/2 [(1 + 4Un 1/2+ + 4Un (2.2)g g g 

in which n is total frequency, U is current speed, g is gravitational

acceleration and 4*(n) is wave frequency spectrum without the influence

of current. In this study, the Kitaigorodskii-Pierson-Moskowitz spectrum

is used. That is,

-(n) = exp[-a(n) (2.3)

in which a and 8 are non-dimensional constants equal to 0.74 and 8.1 x i0-3

respectively, and no = g/W, W being mean wind speed.

The standard deviation a that appears in equation (2.1) is given by

a = c 4(n)dn (2.4)

in which nc is the cut-off frequency of the wave spectrum taken as that

of a wave 30 cm in length.

The probability density functions as given by equation (2.1) are

plotted in figures 2.1, 2.2, and 2.3 for different current and wind

speeds. It is seen that for a given wind, positive current reduces the

probability of large wave elevations while negative current increases the

same. It is also noted that the larger the wind speed, the smaller is

the effect of current on wave elevation.
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Figure 2.1 Probability density function of wave surface elevation
under current for wind speed at 5 m/sec.
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Figure 2.2 Probability density function of wave surface elevation

under current for wind speed at 10 m/sec.
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Figure 2.3 Probability density function of wave surface elevation
under current for wind speed at 20 m/sec.
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2.3 Distribution of Wave Amplitude

For a Gaussian, zero mean, stationary sea, the probability density

function p(n) of the amplitudes n (peak) of the waves is given by

(Longuet-Higgins, 1956).

1 1 r +

Smo 2 r

in which
m2

E2 = (2.6)
mom4

a parameter measuring the r.m.s. width of the spectrum and, in the case

when the waves are considered a function of time t,

mo = 5 (n)dn
n

m2 = S n2c(n)dn (2.7)
n

m4 = f n4 (n)dn
n

If the waves are considered as a function of space n, 4(n) is to be

replaced by i(k), the wave-number spectrum and n is replaced by k, the

wave number. In either case the integrations in equation (2.7) are to

be extended over the entire gravity wave range.

Other statistical properties of wave amplitudes such as the mean

ul, variance u2, and coefficient of skewness B, can be readily derived

from the expression of probability density function p(n) of wave peaks

in equation (2.5). These are
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U4 =0mo(- E2 ), (2.8)

U2 =mol- -1) (1- 2) ], (2.9)

B 4() mo(- E2) 3/2U 2B = 2 (T-3) ( u2) 3 (2.10)

Another quantity of interest is the proportion of negative peaks (peaks

of negative magnitude) out of the total number of peaks of the waves,

denoted by y, and is given by

S= [1-(-)1/2 (2.11)

Effects of current on the statistical quantities mentioned above are

computed for the case when the waves are treated as functions of time and

-presented in graphical forms. In figure 2.4 the ratio of mean wave

amplitude ul with and without the influence of current is plotted against

current speed U with mean wind speed W as a parameter. It is seen that

positive current reduces mean wave amplitude while, due to energy pile up,

negative current increases the same and the effects of current are more

pronounced at lower mean wind speed.

Figure 2.5 gives the ratio of variance of wave amplitudes u2 with

and without current. The same trend that is observed in figure 2.4 is

noted here.

Presented in figure 2.6 is the ratio of coefficient of skewness B

with and without current considered. It is seen that positive (negative)

current gives rise to an increase (decrease) in skewness of wave amplitude

distribution. This is because under the influence of a positive current

the waves become smoother and therefore of narrower band giving rise to

more positive peaks than negative peaks resulting in a more skewed
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Figure 2.5 Change of variance of wave amplitude under current.
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Figure 2.6 Change of skewness of amplitude distribution under current.
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amplitude distribution. Conversely, negative current feeds energy into

the wave system. The waves become more choppy and therefore of wider band

giving rise to a less skewed wave amplitude distribution.

Figure 2.7 presents the ratio of y with and without current included.

That there are less negative peaks in the presence of a positive current

than when the current speed is negative is clearly noted. The physical

mechanism underlying the behavior of the curves in figure 2.6 also governs

that of the curves shown in figure 2.7.

With the statistical moments of wave amplitudes discussed, the

characteristics of the probability density function of wave amplitudes as

given by equation (2.5) and presented in figure 2.8 can be readily under-

stood. In figure 2.8 the probability density functions p(n) of wave

amplitudes are given for wind speed W=10 m/s and current speed U=2, 0,

and -0.4 m/s. That positive current gives rise to smaller values of mean

and spread of wave amplitudes than negative current does is clearly seen.

The curves also show that the amplitude distribution is more skewed under

positive current than in the case of negative current.

2.4 Expected Number of Zero Crossings and Maxima

In addition to amplitude distribution, the statistics of number of

threshold crossings and extrema of random functions and, in this case,

sea waves are often used. While it is difficult to obtain the distri-

butions of these quantities, their expected values are easy to compute

both theoretically and from field observations.

According to Longuet-Higgins (1962), the expected rate of zero

crossings, denoted No, is given by

No = (2.12)
O7r mO
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and the expected number of extrema per unit time is

1 4 1/2
N = () . (2.13)

e Tr m2

When the waves are considered as a function of time, the mi's are obtained

from equation (2.7). When the waves are treated as a function of space,

*(k) and k should be used in place of (n)dn in equation (2.7). In this

study, only the former case is considered.

In figure 2.9 the ratio of Ne with and without the influence of

current is presented. In the presence of positive (negative) current,

waves are of a narrower (broader) band resulting in a decrease (increase)

in expected number of extrema, per unit time.

In figure 2.10 the ratio of No with and without the influence of

current is also presented. It is seen that the same trend observed in

figure 2.9 is noted.

2.5 Velocity of Zero

The quantities examined above all refer to waves either treated as

a function of time t for a fixed point in space or as a function of space

x, for a given instant of time. Moving waves are, however, functions of

both space and time. It is, therefore, of interest to investigate some

statistical properties of moving wave forms. Presented in the following

is velocity of zero.

Consider a one-dimensional random wave f(x,t), the velocity of the

zero, denoted C, is given by (Longuet-Higgins, 1956, 1957)

= f/t (2.14)
=r 8f/3x

The distribution of 5, it was shown (Longuet-Higgins, 1956, 1957), depends

on ip(k), the wave-number spectrum. Under the. influence of current,
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p(k) is given by (Huang, et al, 1972)

B 1 no 4
*(k) 3 exp[-a(k(U+c)) ] (2.15)

.2(1+) kk)

in which c = (g/k)1 / 2 , the phase speed. The above expression for *(k)

is derived based on the assumption that when there is no current the wave

frequency spectrum is given by equation (2.2). Defining the following

moments of p(k) as

m2 =f k24j(k)dk

k

mI = kn (k)dk (2.16)

k

m = n2 qi(k)dk

k

in which under the influence of current the relationship between frequency

n and wave-number k is given by (Huang et al, 1972)

n
2

gk =gk ~1+(+)4Un 1/2 2

[)2 1 n)1/2 (2.17)

the probability density function p(r) of velocity of the zero C is

(Longuet-Higgins, 1957)

1 2
1 o°/m2

P(2) = 2 23/2 (2.18)

[t-5) + ^o/m 2

in which o m2 mo - mi2 and = -ml/m2 , the mean of C. The interquartile

range W, a measure of the spread of C, is i = 2-3AJ/m2.

Plotted in figure 2.11 is the ratio of with and without current.

It is seen that the mean of C increases (decreases) with increasing positive

(negative) current. It is also noted that the larger the wind speed, the
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less is the effect of current on the quantity considered. It is worth

noting that comparison of figure 2.11 with figures 2.4 to 2.10 indicates

that the effect of current is more pronounced on velocity of the zero

than on any of the other quantities examined in this report, suggesting

that velocity of zero may well be a quantity to be used for current

measurement by remote sensing devices.

In figure 2.12 the interquartile range w with and without current is

studied. The curves exhibit the same characteristics as those of the

curves in figure 2.11.

Finally, the probability density function p(c) of C is shown in

figure 2.13 for W = 10 m/s and U = 2 m/s, 0, and -0.4 m/s. The influence

of current on the mean and spread of velocity of zero shown in figures

2.11 and 2.12 is clearly reflected in figure 2.13.
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2.6 Conclusion

The results of the theoretical studies indicate that the statistical

properties of the sea surface are sensitive to whatever causes changes

in the wave energy distribution; i.e., the spectral functions. This

is true even with higher order expensions such as in the Gram-Charlier

series for wave height probability density function. In the open ocean,

mechanisms that will change energy distribution substantially are, of

course, winds and major currents. However, before more detailed knowledge

of generation of waves by wind is available, it is impossible to utilize

these properties as a means to measure surface wind over the ocean. On

the other hand, current-wave interaction is more definite and the effect

is of the first order. Furthermore, since the change depends on relative

values of currents, it is less susceptible to the error in establishing

an absolute relationship as required in wind wave generation studies.

Under normal conditions a wind system will cover an area substantially

larger than the wave scales and thus provide a homogeneous field for wave

actions. Take an inlet or a river mouth for example, the local flow will

generate a non-uniform velocity field over a homogeneous wave field.

Consequently, the waves will interact and change characteristics depending

on the flow conditions. Such changes can be detected easily from the

probability density function.

Another example is the Gulf Stream. The width of the system is about

100km with strong shear zones on its sides. Though the decay scale of a

wave 30cm in length is only 1700m, it is not unusual to find substantial

current velocity changes across such a distance as reported by Stommel

(1966). When waves encounter such current systems, their characteristics

will change accordingly. Although the analyses in this report did not
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include shear current cases where as in the Gulf Stream the shear will

be important, a qualitative prediction on the wave height probability

density function can be made with the available results as a guide. To

facilitate the discussion, a schematic diagram is given in figure 4.1 in

which a typical velocity cross section of the Gulf Stream measured by

Worthington (1954) is shown. The total flow region is further divided

into four different sub-zones numbered one through four, with A and B

indicating the local extreme of velocity. If wind generated waves are

propagating from the open ocean of zone 4 across the Gulf Stream to

zone 1 toward the land, they will first encounter counter current in

zone 3. The probability density function of wave elevation will become

increasingly flat until it reaches point B. From there on the relative

change of the current is increasing in the direction of the waves; there-

fore, the flatness of the density function will become less and less until

point A is reached. After waves pass point A, relative change of the

current is in the opposing direction of the wave again, and the flatness

will increase accordingly. Granted that no single wave will last the

whole current system under moderate or light wind conditions, but as long

as the locally generated waves can experience different current conditions,

the changes in probability curves will still show the effects. Such

changes are easily detected by means of remote sensing devices, and thus

it offers a newway of measuring the major ocean current systems.

Although this seems to solve the problem in principle, there are

related problems that will have to be solved before the final result can

be used to set up a routine in practice. One of the problems is that the

results in the theoretical analysis are based on one-dimensional currents
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and waves, which is not realistic compared to all the ocean situation;

therefore, an extension into the two-dimensional model is necessary.

Secondly, we have to transform all the analyses into wave number

space. For the one-dimensional model, a frequency spectrum is sufficient,

while frequency spectra are easily available from data collected by the

conventional methods in the form of time series, the remote sensing method

is more effective in collecting data at any instance covering a large

area. Such data in spatial variables will give us more complete information

in the form of wave number spectra; therefore, the results presented in

this report will have to be converted into parameters reflecting spatial

distributions.

Thirdly, we need a definite relationship between wave number and

frequency in a random wave field. This is critical especially in this

developing stage when checks between remote sensing and in situ results

are indispensable in calibration and improvement of the system. In such

processes, it is necessary-to transform information from frequency space

(obtained by in situ methods) into wave number space (obtained by remote

sensing methods) and vice versa. In the past a rough relationship based

on a single train of linear small amplitude waves has been used. The

deficiency of this approximation is tolerated for lack of alternatives.

A new method of establishing a more accurate relationship is being

developed during this study.
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3. Interaction of Capillary-Gravity Waves with Non-Uniform Current

One of the problems of a laboratory study of wave interactions 
has been

the difficulty of generating waves in the laboratory which correspond 
with

the type of waves involved in the existing mathematical descriptions 
of the

interaction process. One such description is that of Huang et al (1973)

which rigorously develops the interaction of pure capillary waves 
with current

in the one-dimensional case. However, the single wave trains generated under

laboratory conditions are almost never pure capillary waves, but 
are rather

capillary-gravity waves, described by the equation

2 = yk3 + gk, (3.1)

where a is the wave frequency in radians, y is the surface tension constant,

g is the gravitational acceleration constant, and k is the wave number, 
equal

to 2i/I, where X is the wavelength. Waves generated with a frequency of 30

cy/sec still consist of approximately 34% from gravity wave contributions,

represented by gk in (3.1) above. At 40 cy/sec, these gravity wave contri-

butions are still approximately 23%; thus increasing the frequency results

in the generation of waves which approach the pure capillary case.

Unfortunately though, one phenomena limits the development of a single 
train

of pure capillary waves--cross waves generated at the 
wave maker perpendicular

to the direction of propagation desired. Between 30 and 40 cy/sec, these

cross waves appear and increase in intensity until at about 40 cy/sec 
almost

all energy goes into these cross waves. At this point, no single wave train

is possible. Thus in reality, the single wave trains generated in the

laboratory are basically capillary-gravity waves at the shorter wavelengths,

and conversely, gravity-capillary waves at the longer wavelengths. Therefore,

what must be described mathematically is a more complex wave made up 
of both

capillary and gravity type terms. In general, phase speed c and wavelength

1 are related as shown in Figure 3.1. To the left of the minimum phase speed,

at X = 1.76 cm, are the values corresponding to capillary-gravity waves, and

to the right, gravity-capillary waves. Moving further to the right or left

results in a more "pure" wave. Note that for any c other than the minimum

value, the relation between c and X is double-valued. Because of this, only

the capillary-gravity region will be treated here. The method to be used is

the perturbation method, with the perturbation c being such so that E < i.
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Figure 3.1. The relationship between phase

speed c and wavelength X

In this approach, we use the energy conservation equation as used by

Phillips (1966) which states that

au
- a {E[U + ]} c + S = (3.2)

at 3x a ga axa

where

a, B = 1, 2, corresponding to xl = x, x 2 = y

cga = group velocity

Ua = current velocity

E = wave energy

SaB = excess momentum tensor, or Reynolds stress

6 = dissipation.

For the one-dimensional case under steady state conditions, and no

dissipation, (3.2) can be written as

- {E[U + c ]I + S 0. (3.3)
ax g xxax

Thus expansions in powers of c are needed to substitute into (3.3). We begin

by rewriting (3.1) as

2 crk 3 (1 + . (3.4)
yk

To develop an expression for cg, we take - of (3.4) to get

3kg
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2k = 3yk 2 (1 + + yk3  2. )
9k yk yk3

or

3yk2(1 + 2 - 2g
Sc yk (3.5)

ak ~/22'Vykj (i + k12
yk

Define now

^2
k yk

where the hat values denote constant values at the points where U = 0. Thus

using these definitions, (3.5) can be rewritten as

c c K 1/2(1 + )/2 - 2E (3.6)
S 2 oK 2 3/2 U 1/2

L K 3K (1 + ) (3.6)
K

where co = vK , the phase velocity of a pure capillary wave at the location

where U = 0, thus a constant value. Expanding (3.6) and grouping by orders

of c results in

3g o 1K/2 1 5 2 + (3.7)

g o3/ 24K7/2

Now, to develop an expression for U, we start with the kinematic

conservation equation, as used by Phillips (1966):

ak
-+ Vn= 0.at

Assuming steady state conditions, this becomes

V(a + k.U) = 0.

For the one-dimensional case along x, this is just

T(kU + kc) =0,ax

gf..
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since a = kc. This means that

kU + kc = constant.

A

The constant will be chosen where U = 0, k = k, c = c, thus

kU + kc = kc

or
A

U c k 1+. . (3.8)
^ ^ K

c c k

2
Since 2 = yk + , using (3.1) it follows that

2 yk(l + --R) ykK(l +
c yk K
^2 A

c yk(1 + - ) yk(1 + E)

Yk

or
1/2 E 1/2

K (1+ + )

I2 1/2(I + E)

Using this result in (3.8) leads to

K 1/2(1 + c 1/2K1  (1 + -2

K + )1/2

A 1 12
Expanding, using c = co(l + E - _E + "'), and grouping in terms of £ orders2 8
gives

1 /2 + 11 1 1 JA 1 1 2
U - K1/2)cC o E ) c "C. (3.9)

S 2 K K KJj/2

It thus follows that

aU 1 1 A iA 3 1 iA 7 1 2 aK
ax - 1/2c 5/2 2) + 9/2 + E + (3.10)

SK 2K 2K K 2K K x
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Expanding the energy E now as

E = Eo + cE1 +cE 2 +... (3.11)

and the Reynolds stress term as

S 3 + 2 E (3 + ) + * ... ) [E + E1 + E2 +...

or

Sxx = Eo + (El - Eo)+ (E 2 - El + Eo )  + .. (3.12)

when grouped in orders of c.

By substituting (3.7), (3.9), (3.10), (3.11), and (3.12) into (3.3),

carrying out the multiplications and grouping by orders of E, the energy

equation (3.3) becomes, to order EO,

i /2)o 3-1/2. 3 A 
1  1 3K

x Eo (K - 2o o1 + 2K /o 1 ) + c= 0. (3.13)

rLLiplyiLug (3.13) by K3/2 results in a perect partial erv v of a

quotient, so that (3.13) can be written as

A 1 1 1/2
Eoco [ +-K

- K3/= 0. (3.14)
ax 3/2

Thus

Eo o [1+ 1K/
2

K = constant. (3.15)
K3/2K

Again we choose the constant at the locations where U = 0, for there
A A

Eo = Eo, K = K = 1. This results in a.constant of

^A 1
Eco [1 + ] 3^

1 = constant = -Eco

Equation (3.15) now becomes



A 1 1 1/2
E c

K 3/2 oo A
-K3 2 O0' -

or.

3 3/2

K 2

Equation (3.16), where the order is co, corresponds to the pure capillary

wave case. This result is the same as that obtained by Crapper (1972),

Huang et al (1973), and Holliday (1973). Using (3.9) and (3.10a), (3.16) may

be rewritten in the form

Eo = o .(3.17)
S U 3 c

co 2 co

1
Writing the energy equation (3.3) in its expanded form to order c , we

obtain

a A 1 3 ^ 9 1 1 K 
E c ( + Ec( + -- + ax A4K 3/2 8K 2 4K 2K

+ Eco( ~K) Eo( + = 0. (3.18)
X Kx 2oK 2 0 2 1/2 ax

2K 4K

Note that the E1 terms of (3.18) are of the same form as the order Lo case.
1

Thus (3.18) can be simplified immediately by multiplying through with K3/

resulting in

1 A 1 3 9 1 1 K
E A + Ec (2  -+ + --

K3/2.x 2 K 4K3/2 8K 4K7 2  2K2  x

A 1 1.1/2

+ K= 0. (3.19)
x K3/2
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By adding and subtracting identical terms, thus adding a well chosen

zero to (3.19), its form can be changed to

E ( 3 1 E + 1/2
1( -E +-K )a oo 2K 3/2 IoK2

S4K + E ( + ) a 0. (3.20)
S K3/ 2  0 7/2 3x ax 3/2

K K 2K K

Using (3.17), we may substitute for Eo in (3.20) and determine the

integral of the middle term, obtaining

oCo In K.. (3.21)

By thus using (3.21), (3.20) can now be written as

a 3 A 2K1/ 2  3 ^ 1 1 3 (3.22)

4K2 + 2K KW-x o ( 4K 1/2 + 2K 2 + E1 C(K7/ + 2K + jc° In K 0. (3.22)

Thus

3A A 2K1/2 -3 A 1 1 3A A

o-E c0  + E2 c + + o c ln K = constant, (3.23)
2 oo 4K1/2 2 1 52 2K 00

4K + 2K K

follows from (3.22). Again we choose to develop this constant at the
A A

locations where U = 0, K = K = 1, E1 = E1. Thus we obtain

3^ A 1 ^ 3 ^

constant = -EoCo- ) + ECo ) + Eo (0)2 oo 6 1 0 + 0o

or

constant -{Elco -Eoco} . (3.24)

A

Notice the E1 appearing in (3.24), something we have no expression for. It
1A

is thus at present an unknown constant. To determine E1 , we have to look at

the equation of total energy for a capillary-gravity wave, given by

E E capillary + Egravity



98

or

1 22 1 2 1 2 2 g
E =  ya2k2 + pga = jpya k (1 + . (3.25)

Yk

A A A

Then, where U = 0, E = E, k = k, a = a, so that

E= pya2 + 1l -2) . (3.26)
Yk

But this is just

A A A A A

E E (1 + 4 = + ee + E + . (3.27)

Thus (3.27) results in the general condition that

A

Ei  0, i 2 2. (3.28)

From (3.27), we have now that

A A

E1 = Eo, (3.29)

and (3.24) can be written as

3 5 A

constant = 3 {c 0 c=-Ec . (3.30)

Combining (3.23) and (3.30), our result is nmm

3^ A 2K / 2 - 3 A 1 1 5 A
oCo[ 1/2 2 + In K] + ElCo + E 0 = oco (3.31)

4K + 2K K

or

5 5/2 5/2 l 3K5/2 2K /2  3
E 2 -K1/2 2
1 4K + 2K

E = 3/2 +. (3.32)
Eo K + 2

Equation (3.32) is thus an equation for order E in energy for a capillary-

gravity wave meeting a current U.
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2
To obtain the result to order E , we now write the expansion of the

energy equation (3.3) in order E2, thus

a A 3 1 ^ 21 5 3 -1 I
- {E ( - - )} + Ec ( - - _ -- )
x oo 7/2 8K 0 9/2 2  4K5/2 2K ax

16K 32K 16K K 2K

a A 1 3  9 1 1 aK

^{E1o ---- ) + El5o 5/ 2/2 ^ 3 3 xax I( 4K3 2  o 8K 4K 2K

E 1 1/2) + E 3 3__ = 0. (3.33)

S 2coK 2 )+ 2co(- 22 1/2 ax
ax 2K 4K

Note that the E2 terms have the same form as the order Co case; the E1

terms the same form as the order EO case. Equations (3.16) and (3.32)

specify what Eo and E1 are, thus a similar approach may be used here starting

as before by multiplying through by thus making possible the combination

of the last two terms in (3.33). This results finally in

E _3/2 25/22 2 291 3 2K

Eo ( K2 9 16K5/2 + 8K

2K3/2 - 3K 5 3 i -3 2K) --3 3
- 3K3 1/2  4 2 2 1/2 2 + 5/2

15 3 1 1 2
- + + n K K)
32K 1/2 6 +2

1+21/3 2

521/3 1/2 21/3
+ In

64 1 - 21/3+ 22/3

K - 21/3K1 / 2 +.22/3

+ 15arctan arctan /2 (3.34)
+ f 4/3 4/3 1/2)4 K
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Thus equations have been determined for F6 (3.16), E1 (3.32), and E2 (3.34),

and hence we may write the energy to order e2 as

E = Eo + cE1 + E2E, (3.35)

knowing only the dimensionless parameter K. Thus rewriting (3.8) as

k U c-1
kc c

or

K( + ) = 1, (3.36)

U c
we can define U = w, c = -, and substitute into (3.36), rearrange, andc c
get

1K = (3.37)
S+ c

One possible solution scheme then, is to numerically solve for K for

various values of U and E, and then use (3.16), (3.32), (3.34), and (3.35)

to obtain the energy value for each particular value of U and c chosen.

This is easily done by computer. Note in (3.37) that singularities exist

at values where U + c approach zero. For these singularities, K values

become infinite.

Computer analysis can now easily be done and checked with laboratory

results.
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PART II

EXPERIMENTAL STUDIES

In this part of the report, the wave measurement system was first

discussed. The system was used to study wave decay and capillary-

gravity interactions. Some preliminary results of wind waves are also

included.
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1. INTRODUCTION

This section deals with experiments on Gravity and Capillary waves

relative to improving the understanding of how these wave motions are

influences by surface currents. It is known that active microwave back-

scatter results primarily from the capillary waves via the mechanism of

resonant or Bragg scattering. The relation between the ocean waves that

are the primary contributors to the radar cross section and the incident

radar frequency is shown in Figure 1.1. This figures was developed for a

radar depression angle (NADIR) of 450. It is evident that short wave-

length or capillary waves contribute the most to the radar cross section.

Moreover Huang (1972) has also shown that the shorter waves are more strongly

influenced by currents. Therefore, there should be a strong correlation

between radar cross section and ocean surface currents.

The dependence of radar cross section on Surface rn c aurre n be expected

from this simple argument. However, these has been considerable difficulty

in making measurements of the short or capillary waves, and thus difficulty

in relating the effect of currents via the change in capillary wave spectrum

to radar cross section. Indeed, until recently and with the exception of

microwave measurements of the ocean wave spectrum, the only method of making

capillary wave measurements was with small wave height probes. McGoldrick

(1971) has developed a capacitative wave height probe, specifically designed

for capillary wave measurements. Although the system has been used for

capillary waves, there has remained some question as to the validity of using

a probe for the measurement of short wavelength waves. This is primarily

because any probe will have a meniscus on it due to surface tension and

because capillary waves are also driven by surface tension. Therefore it was

not clear that any effect due to the meniscus could be removed without
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altering the wave under consideration. Because of this, various optical

systems have been proposed to measure capillary waves or to verify the

accuracy of the wave height probe. Recently Tober, et.al.(973) and Sturm

and Sorrell (1973) reported optical wave measurement systems. The data of

Tober, et.al.(1973) reveals higher frequency components than measured with

a wave height probe for the same conditions. Moreover, Sturm and Sorrell

(1973) made a careful comparison of the response of their optical system

with a capacitative wave probe of the kind developed by McGoldrick (1971).

These results show a gradual roll off of the probe sensitivity with increas-

ing wave frequency or decreasing wave length. Based on these results, the

practical limit of the wave height probe is for wave lengths greater than

2-3 cm. This is a longer wave length than much of the wave spectrum of

concern here, and thus the use of an optical wave measurement system is

required.

The system employed by Sturm and Sorrell (1973) used a one dimensional

position sensitive diode. While this diode is commercially available, it

restricts the system to measurement of one dimensional wave trains. Most of

the data of interest involves -2 dimensions or random wave fields, and thus a

different *diode array or matrix is needed. Part 2 of this report describes

the 2 dimensional diode matrix that is used and the necessary electronics

developed for data acquisition with this system.

The following parts of the report deal with capillary wave experiments.

An important question is how long the capillary waves live after generation.

While this is well understood when no surface current or possibly when a

constant current is present, there have been no data for variable currents

where wave-current interaction is expected. In addition the presence of
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any surface film can alter the capillary wave damping. Because of this an

investigation of capillary wave decay on constant and variable currents as

well as an investigation of surface films was undertaken. Part 3 reports

the results of these experiments.

It is well documented that microwave backscatter occurs by the mechanism

of resonant or Bragg scattering from the capillary waves. The presence of

the longer waves or the ocean swell is not negligible, however, and there has

been considerable work including this in computations of radar cross sections.

The more successfull attempts have been with the so-called "composite model"

where the swell is considered to simply tilt or alter the orientation of the

surface containing the capillary waves. This model requires a knowledge of

the wave height spectrum for the capillary waves and an important question is

the influence of the ocean swell on the distribution and amplitude of the

capillary waves. In simplest form this is the question of any interaction

of a long or gravity wave with a capillary wave. To investigate this an

experimental study of the interaction of gravity and capillary waves was

undertaken. The results of these experiments are given in part 4 of this

report.
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2. Wave Measurement System

2.1 Introduction

The overriding objective of this work is to aid in the development of

remote sensing techniques to the point where the wave characteristics, in

particular wave energy or slope spectra, can be used to infer ocean currents.

This requires work in two areas (1) development of remote sensing techniques

to measure the ocean wave characteristics and (2) relating these wave

characteristics to the mean current. Most of the work reported here is

devoted to advancement of knowledge relative to problem (2), which is relating

the wave characteristics or spectra to the mean current that is present.

However this cannot be accomplished without some knowledge of remote sensing

techniques.

Most of the presently conceived remotC sensing methods employ the reflection

of some form of radiation from the ocean surface. This reflection appears to

be related to ocean surface roughness or to the slope distribution of the

ocean surface, rather than to the height distribution of the surface.

However most of the presently employed oceanographic instruments measure wave

height and not wave slope. For a single wave there is a direct relation

between wave height and wave slope, however for a random wave field there is no

such relation, although there are empirical equations that are sometimes used.

It is for this reason it is considered desirable to develop instrumentation to

measure wave slope and to try to relate this measured wave slope spectra to mean

water current. Such instrumentation has two uses in the remote sensing program.

(1) It can be used to check or verify the data obtained by various remote

sensing techniques. For this purpose the instrument should be able to measure

ocean wave slope spectra. (2) It can be used to obtain laboratory data which
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are used to relate measured wave slope spectra to known mean water currents.

For this purpose the instrument must have a high accuracy.

Since our program is primarily an investigation of the relation of wave

characteristics to the current, the development of an instrument to make

laboratory measurements has been our major purpose. However, when possible

we have also kept the requirements of objective (1) in mind and tried to

develop a system that can be modified for ocean measurements.

It should also be noted that much of the ocean's surface roughness is

due to the capillary waves and that the longer gravity waves which contain

most of the energy only weakly affect the surface roughness. Therefore the

most useful information is a relation between capillary wave characteristics

and water currents. Any wave measurement technique that requires the imersion
a

of a probe through the water surface will have/meniscus formed on the probe

due to the surface tension of the water. Since this surface tansion is also

the driving force for capillary waves there has been considerable discussion

by many people as to the accuracy of any probe technique for measuring

capillary waves. Recently Sturm and Sorrel. (1973) have shown experimentally

that the meniscus does cause significant error when measuring the wave height

of short capillary waves with a probe. Therefore it is desirable that the

measurement of wave slope be made without a probe being immersed through the

surface. Finally, since the capillary waves have very short wave lengths,

good spatial resolution is required. Thus the requirements for the wave

measurement system are that it (1) measures more slope to a resonable accuracy

(- 2%) (2) that the spatial resolution be at least 0.5 mm and that the frequency

response be at least 100 Hertz. (3) that no probe sticking through the surface

be required. (4) If practical, a system that can be adopted to ocean surface

measurements be employed.
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The system developed to meet these requirements is an optical wave slope

measuring system, and at present has met all criteria mentioned except (4).

Moreover, at this time there do not appear to be an insurmountable problems

in meeting criteria (4).

2.2 Principle of Operation

Because of the inherent disadvantage with the probe system, there have

been many optical techniques suggested for the measurement of wave slope. A

brief review of some of the most applicable techniques is given with a
that

description of the present system. Early techniques/were considered by

Hulburt (1934), eox and Munk (1954), and Schooley (1954), used the reflection

of lght to infer ocean surface roughness. While these techniques or modifica-

tions of them have been considered as possible remote sensing systems, they

are not suited for accurate laboratory measurements. Moreover, they are not

generally considered desirable for remote sensing because of the inherent

difficulties in data reduction.

The use of the refraction of light at the air-water interface is a more

accurate technique. In this method a thin beam of light is usually directed

vertically through the surface and the angle that the light beam is refracted

from the vertical is measured. This system was first proposed by Cox (1958),

and he measured the refraction angle by intensity variation. He experienced

some errors due to intensity variation due to factors other than refraction

angle and also due to water level changes. Later Prettyman (1969) used

refraction and recorded the refraction angle with a high speed movie camera.

While this technique is accurate, data reduction is tedious for simple wave

systems, and impractical for a random wave field. Recently Tober (1973)

reported a refraction system in which an optical arrangement removed the effect
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of changes in water elevation. However the refraction angle is measured by

a variable density transmission filter, which converts the refraction angle

to a change in intensity. Thus any phenomena which results in intensity changes

(spray, water impurities, etc.) will cause errors. This system is accurate

for water level changes up to + 6 cm.

The present system measures refraction angle directly and thus changes in

light intensity do not affect the data. The major requirement is that the

distance of the detector from the mean water level must be large compared to

changes in mean water level.

In order to illustrate this the principle of operation of the system is

described. Fig. 2.1 illustrates an idealization of a one-dimensional wave as

traversed by the incident light beam.

.~he l-_ri enters vertical. from below and inerceps he

which has the instantaneous slope d /dx = tane1 at the angle 81 with respect

to the surface normal. As a result of refraction the beam enters the air at

angle 2 with respect to the same normal. Angles 1, 82 and indices of refrac-

tion, nl and n2 , are related by Snell's law of refraction, nl sin 01 = n2 sin 02.

Since 0 and 02 are measured from the surface normal, the difference angle

a = 82 - e1 or simply the angular deviation from the vertical is measure experi-

mentally. The difference angle a can be related to the angle 81 through Snell's

law to give

cot(e1 ) = (nl/n 2) csc a - cot a. (2.1)

The surface slope dg/dx = tan81 is simply the reciprocal of equation

(2.1). Hence, by a measurement of a one can obtain the instantaneous surface

slope at the point traversed by the light beam. Equation (2.1) is valid for

any wave slope as long as 61 is less than the critical angle 0c where total



internal reflection occurs. In order to measure the difference angle a, one

relates the offset distance d of the refracted beam from the vertical to the

distance £ of the distrubed surface to the photodetector as simply a = tan-1(d/).

When £ >> a, where a is the total vertical surface displacement, £ may be

considered constant. The present system requires that Z be constant, and thus

for the method in its present form to be used for finite amplitude waves, the

detector must be sufficiently far away that £ >> a. This is the only restriction

in wave amplitude that is inherent in the system. Previous results using this

technique which were reported by Sturm and Sorrell (1973) employed a United

Detector model PIN-LSC-9 photodiode which has an active area of 2.5 mm by 225 mm.

Because of the narrow width of the diode only one-dimensional waves could be

measured. If there is any cross motion the beam refracts perpendicular to the

diode axis and does not fall on the active part of the diode. In addition the

length of the diode puts an upper limit on the maximum slope -and amplitude

that can be measured. The requirement that £ >> a determines a minimum

distance, £min' between the diode and the mean water level. However for a fixed

vertical refraction angle, a, and diode length, there is a maximum length, max'

for which the light remains on the active part of the diode. Thus £max is
and

determined by the diode length/maximum slope to be measured and Lmin is determined

by the requirement that £ >> a. Therefore there is a restriction on both the

minimum and maximum distance of the diode from the mean water level. While this

arrangement permits laboratory experiments under some useful conditions (see for

example Sturm and Sorrell (1973)) it basically restricts its use to low amplitude

one-dimensional wave trains. It is clear that modifications of the system are

necessary if it is to be used in studies relative to remote sensing applications.

The required modification are in the diode matrix used to measure the refraction

angle.
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2.3 The Diode Matrix

A new diode matrix was devised to greatly increase the active area of the

diode system. A large area position sensitive diode is not presently available,

and even if it were it would be prohibitively expensive. The present approach

has been to use an array of diodes, in which each diode gives a signal that

depends only on the factthat lit is incident on the diode. 
The diodes are

arranged in an array or matrix to give the size active area desired, and 
suitable

electronics employed to give a signal whose voltage is proportional to the

position of the diode upon which the light is incident.

The diodes utilized are Vactec S-150-LB diodes which have an active area

of 15cm X 6.5 cm. A schematic of the diode arrangement is shown in Fig. 2.2.

Two diodes are placed end to end giving the matrix a width of 30 rm and 18

diodes units are placed parallel to each to produce a length of 40 cm to 100 cm,

depending on the diode spacing. In order to measure slope in 2 dinsions the

refracted light beam is divided by a beam splitter and directed onto 2 diode

matrices, one which measures position in the x-direction and one which measures

position in the y-direction. This arrangement is also shown in Fig. 2.2.. The

accuracy.of the measured slope depends only on the number of diodes employed.

For 18 diodes the accuracy is - = 5.5% if all diodes are used. The spacing
18

MXXX1M between diodes can be changed to produce an active area that is as long

as desired, and thus the system only requires that the array be the minimum

distance, ki , from the mean water level.
min

These diodes are purchased "off the shelf" from Vartec electronics and

.are quite reasonable ($1.00 - $2.00/each).. Thus the diode array presents no

particular problem. However the associated electronics to convert the signal

from the diode to a voltage proportional to its position in the diode array is

quite involved. This has been a major development item for the present investi-

gation and is thus described in detail.
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2.4 Electronics for the Diode Matrix

The desired behavior of the diode matrix electronic circuit is to convert

the signal output of a single diode to a voltage that is related to that diode's

position in the matrix. The conversion of many similar outputs to a single

coded signal is best handled with digital logic, therefore the approach has

been to amplify the diode output to a voltage compatable with a digital logic
converted into

system. By using digital logic elements the signal can be easily/to a binary

code indicating the diodes position. The resulting binary code can be converted

to an analog signal, if desired, by a digital to analog (D/A) converter. The

circuit for each step is now described in more detail.

The basic circuit for the diode output is shown in Fig. 2.3, the diode

amplifier.circuit. The diode (indicated by PC) output goes to the first stage

of a dual operational amplifier package, IC1. The first amplifier is used to

amplify the current out of the diode. That is, this amplifier is. set up for

current amplification. The amplified current goes to R2 which is of variable

resistance to adjust the voltage input to the second stage of the dual system.

The current output for a fixed incident light intensity is not exactly the same

for each diode and R2 is used to compensate for this such that the voltage into

the 2nd stage is the same for each of the 18 inputs. This voltage goes into one

side of the 2nd amplifier, which is wired to operate as a comparator. If the

voltage is above the reference voltage, R, the output rises until it is clamped

at 4.0 volts by Dl, a Zener diode. If the output is less than R the voltage

out of the 2nd stage is less than 0.5 volts. R3 is simply.a current limiting

resistor. These voltage levels are TTL compatible and thus TTL elements can

be used for the rest of the circuit elements.

A reference level is employed to allow the diode matrix to be used with

high background light levels. That is each diode has some current output when
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there is background light and there is an additional output from the diode when

the refracted light is incident upon the diode. Thus it was considered desirable

to have a reference signal level, such that there is no signal output until the

refracted light is incident upon the diode. Because the background light level

is highly variable, it was desirable to have the reference level controlled by

the diodes themselves. Fig. 2.4 shows.the reference voltage circuit which is.

driven by 2 separate diodes at the top and bottom of the diode matrix. This

circuit follows the background light level and supplies a reference output for

ICi the diode comparators. This circuit has variable feedback through R24 so

the amplification of the background light can be controlled. The circuit is

designed to have a very low output impedance to prevent switching of the

comparators to alter the reference voltage level. This circuit appears to work

quite well and has successfully removed the background from direct florescent

light which oscillates at 120 Hertz.

The output from ICl has a slow rise time relative to that normal for

conventional digital logic elemets. When these logic elements experience a

slowly rising voltage they exhibit instability and oscillate while the voltage

is between the 2 logic levels. For this reason the output of IC1 is directed

through a current limiting resistor into a Schmitt trigger, IC2. The Schmitt

trigger shapes the output into a fast rising signal. This signal is then run

in to an 18 input to 5 bit binary converter made up of NAND gates and NOR gates.

This circuit, including Schmitt triggers is shown in Fig. 2.5, as the 18 input

to 5 bit binary converter. The 5 bit binary output is indicated as outputs A

through E. The choice of 18 inputs is arbitrary as up to 31 diode input channels

can be employed with the 5 bit binary system (1 channel must iemain at zero).
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The 18 input to 5 bit binary converter works for any signal input from the

18 diodes, however anytime the signal is removed the output would be 5 bit

binary zero. It is desirable to have the output remain at the last diode

position or logic level until the next diode is turned on by the incident light

beam. This is accomplished by IC6, which is a Quadruple Bistable Latch. The

Latch is triggered by any input and holds the signal input until a signal from

another diode is received. The circuit is shown in Fig. 2.6, the 5 bit binary

to analog converter. IC5 is a Hex Inverter which inverts the signal 4 times

and is used only to add sufficient delay for the Latch to operate. The result

is that any diode output is held by the Latch until an output from a different

diode occurs. This produces a signal which does not drop to zero when the light

beam is between adjacent diodes.

The 5 bit binary output from the Latches goes directly into a D/A converter,

IC7, if an analog output is desired. If binary output i's desired it can be

taken directly out of the Latch. IC8 amplifies the analog output to the

desired voltage level.

In most cases only an AC signal is desired. That is any DC offset because

the unrefracted light beam is not incident on the center of the matrix is not

wanted. Therefore a separate AC coupling amplifier is used. The circuit is

shown in Fig. 2.7, the output amplifier. The arrangement provides a direct DC

signal and also an AC coupled signal. The operational amplifier, IC12, is used

to provide a high inpedance source so AC coupling down to 0.1 Hertz is obtained.

The output from either the AC or DC jack is made of a series of small

steps. This is shown in Fig. 2.9, which is a record of the signal out for a

single wave train. The steped output, which is due to the position of the

probably
individual diodes, could/cause errors in -e-spectzal analysis of the signal.



116

For this reason an analog smoothing circuit is also included in the output

amplifier. This is also shown in the circuit (Fig. 2.7). It is simply another

operational amplifier used to smooth the output. Fig. 2.9 shows the DC output

and the smoothed output for a single wave. The input impedance R16 and feed-

back capacitance C4 are variable to produce the desired amount of smoothing.

For the data given in Fig. 2.9 R16 was 100K and C4 = .002 f.

In addition to smoothing, in some cases it is desirable to integrate the

wave slope to obtain wave height. While there are some scaling problems

associated with obtaining wave height in this manner, see for example Sturm and

Sorrell (1973), many situations arise when it is desirable to be able to see

wave height versus time, even with the height axis unscaled. This can be

accomplished by changing the input inpedance R16 and feedback capacitance C4

to values which make the amplifier and integrator. Fig. 2.10 shows

the integrated wave slope measured by the optical system and the wave height

as measured by a capacitance probe. In this application R16 is 39K and C4 is

0.5 Vf.

All circuits were made on printed circuit board which was etched from

photographic templates that are made in our Laboratory. The 18 input to 5 bit

binary circuit with Latch and D/A conversion was the most difficult circuit

to wire. A copy of the template used to make the printed circuit board for this

part of the circuit is shown in Fig. 2.8. A list of all parts used in the

circuit is given in Table 2.1.

2.5 Summary

An optical system to measure random wave slope has been developed and

operated in the laboratory. The system has spatial resolution less than 0.5 mm,

frequency response greater than 100 Hertz and does not distrub the surface in

any way. Output from the system has been used to measure wave slope and wave
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height for single wave trains, as reported by Sturm and Sorrell 
(1973).

The system is presently being used to measure the interaction of capillary

waves and gravity waves and to study the interaction of capillary waves with

mean water currents. The only meaningful data for real wave-current inter-

action is to measure the wave slope spectra for a random wave field with

current. The system has been designed to do this specifically and such spectra

are presently being obtained.
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Table 2.1 - Parts List'

Integrated Circuits

Part Number 'Function

ICl - iA747 Operational Amplifier

IC2 SN7413 Schmitt Trigger

IC3,IC9 SN7430 8 input NAND gate

IC4,IC10 SN7402 NOR gate

IC5 SN7404 Hex Inverter

IC6 SN7475 Quadruple Bistable Latch

IC7 MC1406 D/A Converter

IC8 VA741 Operational Amplifier

IC12,IC13,IC14

Active Components

Q1 40409 NPN power transistor

Q2 40410 PNP power transistor

D1 N747A 3.9 Volt Zener Diode

PC- - S 150- LB Vactec Selenium-photovoltaic cell

Capacitors - All Capacitors 50OWVDC ceramic unless otherwise specified

Capacitors Value

C1 100 pf

C2 1 pf

C3,C5 0.1 pf

C4
Integration 0.5 pf
Smoothing 0.002 pf

C6,C7 10 uf 25 WVDC electrolytic
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Table 2.1 (cont.)

Resistors - All resistors 1/4 watt unless otherwise specified.

Resistor

R1,R3,R5 1K

R2,R14,R23,R30 10K Trimpot

R4 1K Trimpot

R6 4.7K

R7 6.8 meg.

R8 2 meg. Trimpot

R9,R17 2.2 meg.

"R10,Rll,RI9,R20 10K

R12,R13,R21,R22 1.5K

R15,R25,R26 100 9

R16
Integration 39K

Smoothing 100K

R18 100K

R24 1K Linear Taper Pot

R27,R28 1K - 1 watt

R29 270 a - 1 watt
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(A) Wave slope from the optical system

(B) Smoothed wave slope from the optical system

Fig. 2.9 Wave slope from the optical measuring system (vertical scales are
not identical).
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(A) Wave Height - measured by a capacitative probe

(B) Wave Height - by integrating wave slope

Fig. 2.10 Wave height as measured by a wave height probe and by the
optical system (vertical scales are not identical).
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3. Wave Decay Studies

3.1 Introduction /2

The investigation of capillary wave decay or attentuation rates on

mean water currents has been nearly completed. Special attention was

given to two separate conditions (1) when a constant mean water current

is present and theoretical analysis predicts no energy transfer between

the wave motion and the current, i.e., there is no wave current interaction;

and (2) when there is wave motion with a spatially varying current and wave-

current interaction is expected from theoretical considerations (Phillips,

1966). Generally one expects an exponential decay of wave energy, and

simple tests of wave decay confirm this. However, with capillary waves

the presence of any film on the surface may contaminate the surface and

although the decay is still exponential it may be greatly different than

that redicted for can saes. McGoldrick (1q70) as well as Davies

and Vose (1965) have reported results on this effect.

Because the effect of surface films can alter the results the present

work includes extensive tests for the presence of surface films. This work

indicates when these films can be expected, the effect of the surface film

on wave damping, and how surface films can be avoided in laboratory

experiments.

Another phenomena occurs in laboratory wave experiments, which is the

occurrence of cross waves or waves that propagate perpendicular to the

direction of the longitudinal wave under study. These waves are experi-

enced in many wave studies when no currents are present and Mahony

et aZ. (1972) have reported results from extensive cross wave experiments.

The present study has also experienced cross waves under most conditions.

Moreover the appearance and subsequent behavior of these cross waves is
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not that expected, observed or predicted by previous work for waves

motion when no current is present. The preliminary test results indicate

that (1) cross wave current interaction can occur even when there is no

energy transfer from the current to the longitudinal wave; and (2) the

presence of a current can generate cross waves as the longitudinal wave

decays. Both of these results have important applications in physical

oceanography. The latter is especially important, because it indicates

that a current can break up a regular longitudinal wave train into random

motion even when there is no energy transfer from the current to the

longitudinal wave train.

The importance of both film damping and cross waves in wave decay

studies with application to physical oceanography has caused both to be

investigated in detail. The results of these investigations are reported

here.

3.2 Studies of the Effect of Surface Films

Numerous investigators have studied the problem of wave damping by

viscosity and/or surface films. A recent example of this work is con-

tained in a paper by Davies and Vose (1965) who measured the damping of

capillary waves on both clean surfaces and those with controlled amounts

of contaminations. In the absence of a surface film (clean surface),

Davies and Vose observed that the damping of waves resulting from viscous

energy dissipation in the bulk of the fluid could be accurately predicted

by the relationship (one-dimensional)

E = E0 exp [(-4v k
2/c ) x] (3.1)

where v is the kinematic viscosity, k the wave-number, and c the wave

I9
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group velocity. This result is well known and can be obtained directly

from a first order (linear) wave analysis (e.g., Phillips, 1969). The

wave energy E, also calculated from the linear analysis, is given by

E p a2 (3.2)
2k

where p is the fluid density, a the wave amplitude (sinusoidal wave),

and a the radian frequency. In deep water (d w > X/2) a can be expressed

in terms of k by the relationship a2 = gk + yk3 , where g is the

acceleration of gravity and y the kinematic surface tension. With this

equation (3.2) can be rewritten in a more useful form

E = p(ak)2 y ( 1 + ) = p(ak)2 y ( 1+ ) (3.3)
2 yk2  2

where 8 = g/yk2 is dimensionless. The term ak is the maximum slope of

the wave ? = a sin (kx - at), i.e., ak = (d /dx)m; furthermore it

follows that (ak)2/2 is equivalent to [(d /dx)r s)]2 where rms is a

root-mean square average of the wave slope. For short water waves

(X < 1.7 cm) 8 is less than one and in the limit as X + 0, B -+ 0. For

short capillary waves (in these experiments) X < 1 cm and 0 < 0.345

equation (3.3) can be approximated by

E =PY ( (3.4)

rms

allowing equation (3.1) to be written as

E = py (d ) exp [(-4v k2/c ) x] , (3.5)

Srms

which implies

1..4
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(d) (d) exp (-2v k2/cg) x]. (3.6)
dx dx 0rms rms

Thus, for short capillary waves, one would expect to observe a wave

with initial slope (d /dx) 0 decay at a rate given by

A 2v k2  (3.7)
v c

g

which is the viscous attenuation coefficient. In view of this, a number

of capillary wave decay studies were performed on tap water. Special

care was taken to minimize the long term growth of a surface film (whose

existence would invalidate the preceeding analysis). This was accomplished

by a constant skimming process whereby water added to the bulk of the

fluid was removed from the surface by a slightly submerged sharp-rimmed

standpipe. The rate of surface runoff was maintained at approximately

10 cc/min.

In each instance the experimentally measured decay was exponential

with a logarithmic decrement (attenuation coefficient) Av as given by

equation (3.7). The logarithmic decrement is defined as the natural

logarithmic ratio of any two successive wave amplitudes (slopes) divided

by the wave length A = £n(ai/ai+1)/X or.simply A = kn(2)/d 2 where d2 is

the distance required for the wave amplitude (slope) to decay to one-half

the original amplitude (slope). The results of one of these decay trials

are presented in Table 3.1 and Figure 3.1.
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Table 3.1 Summary of wave conditions for decay
data presented in Figure 3.1

Measured Calculated

T = 230 C R = 321.59

y = 71.29 cm3/sec2  A = 0.0383

A = 0.733 cm d2 = 18.1 cm

t = 28.21 ms Af!Av = 3.17

c =.25.98 cm/s c = 26.91 cm/s

A = 0.0378 cm-1 c = 36.11 cm/s

Although the surface of the wave tank was constantly skimmed during

all wave decay experiments, the possiblity of a surface film existed.

A practical upper bound on film damping, which has been confirmed by

experiment (McGoldrick, 1970), is that due.to a rigid (inextensible or

close packed) film acting in conjunction with viscous decay. The

logarithmic decrement for this film is given by Af = (ovk2/8)1/2/cg

or a factor 2-5/2 Rw 1/2 larger than Av due to viscous dissipation alone.

For all waves with R > 32, i.e., capillary waves with X > 0.2 mm and

a < 105, Af is greater than A . For these experiments the Reynolds

number Rw varies between 200 and 350 which implies 2.5 < A f/A < 3.5;

thus the total decrement AT would be 3.5 A < AT < 4.5 A . McGoldrick

(1970) experimentally obtained for unskimmed tap water a total decrement

of AT = 5.77 Av for a wave Reynolds number Rw = 450, which 
is approxi-

mately what one would obtain from rigid film attenuation combined with

viscous dissipation at this Reynolds number.
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Figure 3.1 The measured decay of capillary waves on a static surface
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These calculations demonstrate that film damping, if present, should

be easily observed experimentally in the form of increased damping. The

data, however, show no such effect since within the experimental error

(less than + 10 percent) the measured decay'rate was accurately predicted

by viscous dissipation alone. Therefore, in view of the precautions

taken to maintain a clean surface, i.e., constant skimming, and no support

in the decay data for increased damping, it was concluded that little or

no surface film was present.

3.3 Data Acquisition Techniques

The data for these and all following experiments were obtained as

follows. The wave slope was measured as described with our optical

system. Changes in wave slope resulting from small variations in wave

amplitude were minimized by averaging over several periods (n > 10) with

a true rms voltmeter (DISA 55D35); wave maker period (T) was measured by

a digital counter (General Radio 1911) and static surface tension (T')

by a du NoUy tensiometer. Wavelength was measured by comparing the

phase of the water wave. to that of the function generator (Wavetek 134)

as viewed on a dual trace cathode ray oscilliscope (Tektronics 7704).

The position of the incident light beam was set at a distance from the

wave plunger where the phase of the measured water wave was judged by

eye to be the same as that of the function generator. The light beam

was then translated a total of five wavelengths (5X) and the average

value obtained was chosen as the actual wavelength. This averaging

technique was needed because of the difficulty in determining when

exactly 2n radians of phase. shift had occurred; in other words, if the

error in determining the endpoints of the phase comparison is spread
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over several wavelengths, a more accurate measure of X can be obtained.

This averaging process was justified on the grounds that any small

variation in X over five wavelengths, as a result of a possible change

in phase velocity, would be insignificant compared to an error in phase

measurement, even though the measure of one wavelength might appear more

desirable. The experimental phase velocity c was simply calculated from

c = X/T and A the logarithmic decrement, measured from the slope of the

experimental decay data when plotted on a semi-log scale.

The relationship between radian wave frequency a = 2wf and the radian

wave-number k = 2r/T for waves in deep water can be expressed as

a2 = gk + yk3  (3.8)

Since the phase velocity is related to the frequency and wave number by

c = a/k , equation (3.8) gives the phase velocity as

2 =g/k + yk (3.9)

In addition to the phase velocity c, it is convenient at this point to

compute the group cg d
compute the group g . Thus the group velocity is

Cg = g + 3y [gk + yk3] - 1/ 2 (3.10)

The calculated values of phase and group velocity (c and cg, respectively)

were obtained from equations (3.8) and (3.9) using the static experimental

value of surface tension; the wave Reynolds number Rw = ( -e) was calculated
vk2

from the measured wavelength and frequency (a = 2n/t) and the tabulated

value for viscosity at the measured temperature.
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3.4 Capillary Waves on Constant Currents

Following these experiments a study of capillary wave dissipation

on a constant current was undertaken. Modifications to the system

required the addition of a recirculating pump and a section of the test

channel with a reduced area 20 cm wide by 2 to 4 cm deep in order that

current velocities as great as 30 cm/s could be obtained from moderate

flow rates (Q < 2 L/s). The water current velocity was measured with a

hot-film anemometer probe (developed by us) powered by a constant-tempera-

ture anemometer bridge (DISA 55D01). Within the resolution of the

anemometer (+ 0.5 cm/s), the velocity profile in the reduced area test

section was uniform. The usual mechanical wave maker was replaced by a

pulsed air wave maker which produced waves without physically contacting

the water surface. This device consisted simply of a narrow slit 2 mm

wide and 20 cm long through which air pulses, generated by a large

permanent-magnet loudspeaker, could be directed at the water surface.

This change was necessary because a mechanical plunger stagnated the

surface flow and generated a train of ripples, fixed on the oncoming

stream, which interfered with the capillary waves under study.

With the modifications described above, wave decay measurements

with constant velocity currents directed against the direction of wave

propagation were carried out. In a majority of these trials, however,

increased cross-wave content, which became more severe as one moved away

from the wave generator, was observed. In addition, the ratio of cross-

wave slope to progressive wave slope at any fixed point remained nearly

constant over a wide range of wave generator amplitudes. This feature

is not observed in wave decay studies on a static tank where a neutral
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stability effect was observed. That is, there exists a wave generator

amplitude which would not spontaneously generate cross-waves but would

sustain (and amplify) externally introduced cross mode distrubances.

Below this critical (and frequency dependent) amplitude cross-waves

cannot be maintained, while above it cross-waves are always present.

The existence of these points of neutral stability has been observed by

other investigators and several theoretical and experimental papers have

been written about cross-waves.

One of the most comprehensive studies to date is presented in a

two-part paper by Mahony et aZ. (1972). Mahony surveyed previous theories

and proposed that there are two modes of cross-wave generation one near

and another more distant from the wave generator, while Barnard and

Pritchard conducted experiments with cross-waves generated by a mechanical

(flap type) wave generator on a still (zero current) surface. These

experiments document a number of characteristics of cross-waves, including

neutral stabilities and growth and decay rates. From this experimentalist's

viewpoint, probably the most disturbing feature of cross-waves as reported

by these investigators is that cross-waves are not stationary in either

time or space. Rather they grow and decay at slow rates with time constants

on the order of 75 seconds when the wave generator is producing longitudinal

waves with a fundamental frequency on the order of 5 Hz.

When a mean current was present, no condition of neutral stability was

observed. It was first hypothesized that the pulsed air or pneumatic wave

generator was the source of this increased cross-wave content. This

hypothesis was tested experimentally by measuring the cross-wave content

(in two separate trials) of two identical trains of capillary waves

(r = 35.90 ms, = 0.928 cm) on still water, one generated by the mechanical
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plunger and the other by the pneumatic generator. 
The amplitude of each

generator was adjusted to give the same rms slope at 
a distance of 5 cm

from the plunger and the variation in rms slope of the lorigitudinal wave

was measured in the transverse direction (parallel to the wavefront) as

a-function of position from the wave generator. The results of these

measurements, with the maximum transverse variation in wave slope

expressed as a percent of the total wave slope, are presented in Figure

3.2. Initially the mechanical generator exhibits a lower percentage of

slope variation in the transverse direction; however, 
after about 10 cm

the percentage of cross modes from either of the generators is essentially

the same with an equilibrium value between 30 and 40 percent. It is

concluded, therefore, that the cross mode content initiated by either of

the two generators is comparable, and that the increased cross mode wave

content observed when a mean current is present cannot simply be attributed

to the pneumatic wave generator. Rather it appears as if the current

contributes to the growth of cross modes by some mechanism which is not

presently understood. Figure 3.2 also presents a plot of the growth of

cross modes when a current of -8 cm/s is present. The initial growth

rate is nearly-linear with distance with a final equilibrium value

approximately double that observed on a static surface.

3.5 Wave Decay Measurements on a Constant Current

The apparent rate of wave decay is related to the cross mode content.

When this content was low, the measured decay rate was that predicted by

viscous dissipation alone. The decay was exponential with a logarithmic

decrement A = 2v k2/c .based on the actual (local) wave-number (cf.,

Section 3.5) and group velocity. A typical plot of one such run is
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presented in Figure 3.3 with accompanying Table 3.2. For the given

conditions one concludes that film damping is not present by arguments

previously outlined; i.e., predicted film damping for R = 210 would

be on the order of 2.5 times as great and the data do not support this

fact. When cross mode content is high, the apparent decay rate is not

exponential throughout. Rather, the decay rate is initially exponential

in the vicinity of the wave generator, but about 20 to 30 wavelengths

from the wave generator the decay data become erratic with large

variations from the initial exponential decay rate (Figures 3.4, 3.5).

However, from an observation of the data it appears that a lateral

transfer of the progressive wave energy takes place; that is, an increase

in energy at one traverse location (at a fixed distance from the wave

source) is balanced by a decrease at another.

Table 3.2 Summary of wave conditions for decay data
presented in Figure 3.3

Measured Calculated

T = 24.50C R = 210.6

y = 71.3 cm3/s2  Av = 0.041 cm-1

x = 0.986 cm d2 
= 16.9 cm

T = 80.42 ms Af/Av = 2.56

c = 12.26 cm/s c. = 24.641 cm/s

exp = 0.0461 cm-1 U = c. - c = 12.37 cm/s
expU = 11.5 /s

U = 11.5 cm/s
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Consequently, spatial averaging of the decay data in the transverse

direction removed the individual peaks and troughs and resulted in a

smooth exponential decay. In practice this was accomplished by measuring

the wave slope as a function of distance from the wave generator at five

or seven transverse locations across the tank. (Usually this was done

symmetrically about the centerline). The tabulated values for slope at

each position x from the wave generator were then averaged (arithmetic)

to obtain the spatial average which was taken as the representative value

of slope, and hence energy, at this value x. The results of one such

trial are presented in Figures 3.4 and 3.5, which illustrate the peaking

described above, and the results of spatial averaging of these data are

given in Figure 3.6 and in the accompanying Table 3.3.

Table 3.3 Summary of wave conditions for decay
data presented in Figure 3.6

Measured Calculated

T = 240C R = 264

y = 71.4 cm3/s2 Av = 0.0355 cm-1

= 0.026 cm d = 19.5 cm

= 54.59 ms A f/ = 2.87

c = 16.96 cm/s c. = 25.04 cm/s

A = 0.038 U = c. - c = 8.08 cm/s
exp 1

U = 8 cm/s

As a result one must conclude from these experiments, including the

special case where U = 0, the following: (1) in the absence of surface
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films the Kelvin dispersion equation (3.9) accurately relates phase

velocity (or frequency) to wave-number; and, (2) the attenuation of

waves occurs as a result of viscous dissipation as predicted by

equation (3.6). In none of the cases, however, was energy transferred

either to or from the current into the progressive (longitudinal) waves.

However, Figure 3.2 indicates that energy is transferred from the current

into the corss-waves or transverse modes.

3.6 Capillary Waves on a Variable Current

From theoretical considerations it has been suggested (Phillips,

1966) that wave energy transfer to or from a mean current, i.e., wave-

current interaction, should occur whenever waves propagate through regions

where variable currents exist. This means that wave-current interactions

depend on current gradients rather than simply the existence of a current.

The previous experiments on constant currents support half of this argu-

ment, namely, when no current gradient is present no wave-current inter-

action occurs. To verify the second half of the argument, wave decay

studies on a variable current were undertaken. In this section the

results of the study are presented.

The measurement of capillary wave decay on a variable current

proceeded in a manner indentical to that of the previous constant current

experiments with the exception of wavelength measurements. These were

obtained indirectly as follows. From equation (3.8) one obtains

o = (k0 c0 )
2 = gk0 + yk3 (3.11)

where k0 , Co0 and a0 are the wave-number, phase velocity, and frequency

of waves on a zero current.
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From this it follows that

k (r + s)1/3 + (s - r)1/3 (3.12)
0 i

where

r2 = (a4/T'2 )/4 + (g/T')3/27,

and

s = 02/2T'

The dispersion equation (3.9) can be used with an equation requiring

the conservation of waves (e.g. Phillips, 1966) which for steady waves

on deep water reduces to

GO = constant = koc 0 
= kc = k(ci + v) (3.13)

These equations (3.9) and (3.13) are then solved simultaneously for wave

number resulting in a cubic equation of the form

(kO/k)3  + al(ko/k)2 + a2(ko/k) + a = 0 ,

where the coefficients, al, a2, and a3 depend only on the known quantities

U, CO, k0 , y and g are given by

2Uc 0 + g/ko

al = 0 , a2 = (U/c )2 a = yko/C2

This equation is solved explicitly for k resulting in an expression of

the form

k = k (kO , co , U, y, g) (3.14)

Thus, for each value of current U, one can obtain a corresponding value

for k and hence for the wavelength X.

Figure 3.7 is an experimentally determined plot of the current used

in the following wave decay study. By convention, the current is
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considered negative since it opposes the direction of wave propagation;

also, the magnitude decreases linearly as one moves away from the wave

generator (located at x = 0).

Waves with a period of 92.99 ms (10.73 Hz) were generated on the

-17 cm/s current; the waves propagated through the variable current region

and were finally dissipated in the -5 cm/s constant current region. The

measured decay of these waves is presented in Figure 3.8.

The data presented are the spatial average of seven traverses of

the test section as cross wave content was high due in part to the fast

current and relatively short wave period.

The dashed line on Figure 3.8 represents the expected decay from

viscous dissipation alone. This was obtained as follows. At each data

point the wave-number k was calculated from equation (3.14) and the

measured current velocity. This local wave-number was then used to

compute the viscous decay decrement Av at each point; the dashed line is

the tangent of these local decay rates. It can be seen-from the figure

that the initial and final decay rates (slope of the dashed line) are

tangent to the data. This is consistent with the previous findings for

wave decay on constant currents since at either end of the variable

current section constant current conditions exist. However, the over-all

predicted rate of decay is too slow to explain the decay observed in the

variable current region.

An analysis which includes the effect of a variable current on the

wave energy is given by Phillips (1969). For a one-dimensional train of

waves propagating in the x direction, he shows that the conservation of

the fluctuating component of the wave energy can be expressed as
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d [E (U + c) ] + S - - , (3.15)
dx g xx dx

where E is the wave energy, U the current velocity, cg the wave group

velocity, S, the radiation stress in the x direction, and E the rate of
xx

energy dissipation per unit volume due to viscosity. From a linear

analysis, he also shows that c = 2pyk 2 (ak)2 = 4vk 2E and

S E ( 3 + ) where 8 = g/yk 2 (introduced in equation (3.3)) is
xx 2(1 + 8)

a dimensionless parameter. For this experiment 8 reaches a maximum value

of 0.98 which implies that the acceleration of gravity is no longer

negligible and must be included in the analysis. As a consequence the

radiation stress Sxx and the group velocity cg are expanded in a power

series with 8 as an ordering parameter. Neglecting all but the linear

terms, one obtains first order perturbation relations for Sxx and c

given by

S = E (3/2 - 8) (3.16a)

and

c = (3 - 8/2) c/2. (3.16b)
g

Thus equation (3.15) can be written as

d-- [E(U + (3/2 - 6/4)c)] + [(3/2 - 8) + 4vk2 ] E =0 . (3.17)
dx

Equation (3.17) can be put in the form

dE + p(x) E =0, (3.18)
dx

where

p(x) = [(5/2 - 8) ~+ (3/2 - 8 /4) - + 4vk 2]/[U + (3/2 - 8/4)c] . (3.19)
p~) C52 dx dx28/)
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Equation (3.18) has the general salution

E = E0 exp (- fx p() dw , (3.20)

0

where E0 is the wave energy at x = 0 and p(x) represents a generalized

decay coefficient for capillary waves on a current. It can be readily

seen from equation (3.19) that when the current is constant dU/dx and

dc/dx are zero, and p(x) reduces to the constant 4vk
2/(U + (3/2 - 6/4) c).

Since capillary wave energy is proportional to rms slope squared, the

decay decrement for wave slope is half the above or A where

U + (3/2 - 8/4) c = c , the group velocity.

For a variable current (3.19) is a function of U(x) which must be

determined experimentally. In view of the difficulty in obtaining a

compact functional form for equation (3.19) and the approximations

implicit in equation (3.17), no closed form integration of equation

(3.20) was attempted. Rather, two graphical techniques were employed.

In the first case p(x) was plotted on a Cartesian scale, and the-integral

of p(x) was simply obtained by counting squares under the curve. In this

manner a table of values for the definite integral fx p(w)dw was obtained.

Subsequently, E/E0 from equation (3.20) was evaluated at each data point

and plotted on a semi-logarithmic scale.

Within a constant, the results of these calculations are presented

as the solid line in Figure 3.8. Alternately, p(x) was evaluated at the

values of x corresponding to each data point. The value of p(x) thus

obtained corresponded to the energy logarithmic decrement or simply the

slope of E(x)/E 0 at each data point. Thus, the solid line in Figure 3.8

can also be interpreted as the tangent to all the predicted decay rates
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obtained from p(x). Table 3.4 summarizes the calculations involved to

obtain p(x) given the experimentally measured values for the current.

Table 3.4 Numerical calculations involved in the evaluation of
equation (3.19)

U ci'cm/s g/yk2 = 4vk 2  dU/dx dc/dx p(x) 2tn2/p(x)

-17 25.879 0.238 2.18 0.1 -0.9038 0.1119 12.379

-16 25.425 0.269 1.93 0.666 -0.25 0.1496 9.260

-14 24.625 0.341 1.52 0.666 -0.236 0.1259 11.00

-12 23.90 0.434 1.197 0.666 -0.19 0.108 12.829

-10 23.496 0.550 0.943 0.666 -0.117 0.0946 14.648

- 8 23.175 0.696 0.746 0.666 -0.10 0.0798 17.38

- 6 23.012 0.875 0.594 0.666 -0.011 0.0706 19.61

- 5 22.987 0.977 0.531 0.125 +0.0357 0.0665 20.86

- 5 22.987 0.-97-7- -- 0.531 0.0.. - 0.0 ---- 0.-0222- . 62.30 ...

From the data in Figure 3.8 it can be seen that the decay rate

throughout the variable current region is nearly constant, although the

wave-number (k) and the current velocity (U) decreases rather rapidly.

This effect can be explained by wave-current interaction theory through

an examination of equation (3.19). It can be seen that the sum of three

terms (5/2 - ) , (3/2 - 8/4) dL , and 4vk 2 , jointly divided by the

local group velocity, controls the rate of wave decay. At the beginning

of the variable current region where U = -16 cm/s, the ratio of

attenuation resulting from viscosity to that arising from the gradient
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dU dc

terms, i.e., R 4vk2/[(5/2 - ) + (3/2 - /4) ] is
vg dx dx

1.93Rvg 1.13 = 1.71, so that for the shorter wavelengths encountered the
vg 1.13

rate of decay is controlled by viscous dissipation. As a current

decreases, however, the wave-number decreases such that at U = -12 cm/s,

R 120 1.08 which implies that the gradient terms account forvg 1.11

nearly half of the apparent rate of decay. For u = -6 cm/s, the ratio

0.595
R 0 0 0.558 and the effect of viscosity is overshadowed by the
vg 1.066

dU
gradients. The net effect is that the sum of the three terms (5/2 - 8)dc

(3/2 - 0/4) d , and 4vk 2 remain roughly constant, and hence the rate of

wave decay also remains constant. The data in Figure 3.8 support this

observation.

It is important to note, however, that the increased rate of decay

from the combined effects of wave-current intraction a v-iscous dissia-

tion is actually apparent rather than real. That is, the action of the

radiation stress is to transfer (conservatively) energy from the wave into

the current rather than to dissipate it as is the case with viscosity.

This can be shown for the case of pure capillary waves, i.e., 8 = 0, by

considering equation (3.17) without the term (4vk2 ) resulting from viscous

dissipation, namely,

d 3 dUd [E (U + 3/2 c) ] + - E = 0. (3.21)dx 2 dx

For pure capillary waves, equation (2.12) reduces to

c2 = y k2  (3.22)

Combining equation (3.22) with (3.10), one obtains
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C3  U c2- + = 0  (3.23a)
c3  c c2

from which it follows that

c2dU = -2c (U + 3/2 c) dc . (3.23b)
dx dx

Multiplying (3.21) by c3 and combining with (3.23b), one obtains

c [E(U + 3/2 c)] - 3c2E(U + 3/2 c) dc 0 (3.24a)
dx dx

or

d [E(U + 3/2 c)/c 3 ] = 0 (3.24b)
dx

Thus, without viscous dissipation

E(U + 3/2 c) = const 3 EO (3.25)

c3  2 c2

0

where subscript (0) indicates conditions when U = 0.

For a single train of capillary waves, E = py(ak) 2 (from equation

(3.3)). Substituting into equation (3.25) results in

c 3
(ak)2  00 E (3.26)

- 0  - . (3.26)

2 2 U E0
0(a C 3 c0

E/E0 as a function of U/c0 is plotted in Figure 3.9. It can be seen that

the wave energy E decreases as -U/c0 tends towards zefo (U/c0 = 0). There-

fore, the energy is not dissipated as a result of the wave-current inter-

action. Rather it is simply transferred from the waves into the current.

Thus, the vertical distance between the solid and dashed curves in
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Figure 3.8 is a measure of the total energy transferred from the waves

into the current. Ideally, if the starting current conditions could be

re-established, this portion of the energy would be returned to the waves.

It is concluded that this detail investigation of wave-current

interaction with variable currents confirms recent analytical predictions,

that is the energy transfered from the wave to the current is exactly

that predicted. However, it is probably more important to note that in

a variable current the cross waves interact with the current to gain

energy while the longitudinal waves interact with the current to loss

energy. In physical oceanography one is concerned with the eventual

wave state after propagation through a variable current region and these

experiments that after a short period in many cases the cross waves will

be almost as large as the longitudinal waves. This is considered to be

quite an important observation.
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4. Experimental Studies of Capillary-Gravity Wave Interaction

4.1 Introduction

In almost all remote sensing techniques a large part of the -data (usually

backscatter at some angle) occurs or is caused by the short wavelength waves on

the ocean surface. Therefore attention must be given the shorter waves and how

they effect the data that is obtained. Since these waves have much shlorter wave-

lengths than the longer gravity waves, they may not be uniformly distributed on

the longer waves, but may collect at the peak, trough, front or back of the gravity

wave. In addition since the waves receive energy and decay at different rates,

their relative amplitudes may change as the wave system propagates. Both of the

factors, non-uniform distribution of the capillary waves and relative amplitude of

the waves will alter the signal obtained by the sensing system. In the ocean there

is, of course, a spectrum of wavelengths from the long gravity waves to the shorter

capillary waves and thus we are considering the effect the gravity waves will have

on the capillary waves. Any changes in the short wave distribution or amplitudes

wil-l-a-lter a return- signal from these waves.

In order to investigate this a simplified experiment was devised and undertaken.

This was to generate a train of gravity waves at a single frequency or wavelength

and superimpose on these long waves a uniform series of much shorter wavelength

capillary waves (also at a single higher frequency). The composite wave system was

measured near the plunger and then measured at various positions of increasing

distance from the plunger in an effort to determine how the capillary waves inter-

acted with the gravity waves. This data was analyzed to determine any non-uniformities

in the capillary wave distribution and to see if any energy was being transfered

between the wave systems. The experimental results are plots of composite wave height

at various distances away from the generation source.
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4.2 Experimental Technique

The waves were generated by a single plunger that was driven by a signal

which was the addition of the two desired waves. Two sine wave generators were

used, their signals added electronically and amplified to drive a large permanent

magnet loudspeaker. The Speaker was connected to a plunger which was used to

generate the waves. Figures 4.1a and 4.1b show a typical signal feed into the

amplifier to drive the plunger. This particular signal has a lower frequency of

4 Hertz for the long wave and a frequency of 18 Hertz for the short wave. This

signal record shown in Figure 
4 .1b is .51 sec. in duration and the longer scale

Figure 4.1a is 1.25 sec. in duration. Note that the amplitude of the capillary

waves is considerably larger than that for the gravity waves, the reason for this

will be discussed later. This is the signal used to generate the data shown in

Figures 4.3a to 4.3i. Figure 4.2 illustrates the speaker and plunger arrangement

used -o generate the waves. In order to assure that the plunger accurately

reproduces the input signal to the amplifier a positive feedback circuit was

employed. Figure 4.2 also shows this feedback circuit.

After generation the waves were measured by.the optical wave slope system

that we have developed, Sturm and Sorrell (1973). This system used the new

electronic detection system and diode matrix that has been recently developed and

was described in section two (2) of this report. This system measures wave slope

directly and the signal must be integrated to provide wave height. The integrator

used to accomplish this is also described in section two (2) and

a discussion of the complete method may be found in the paper by Sturm and Sorrell

(1973). One consequence of this procedure is that the amplitude scale is not the

same for both waves, but varies directly with the phase speed of the wave. This

presents no real error however, as the phase speeds are known and if the abs6lute
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ratio of amplitudes is desired, they, can be easily scaled. Moreover for the

present experiments the amplitude scale was varied in order to show the waves as

clearly as possible. Therefore, for all of the data presented, only the relative

amplitude of the wave is presented and no absolute amplitudes are given.

Both waves are thus generated at the plunger and are observed at various

distances away from the plunger. The waves require some distance from the plunger

to reach equilibrium before viscous decay starts. This distance is greater for

the gravity waves than the capillary waves, and the intermediate position of 7 cm

from the plunger is the first observation point in all cases. By the time the

capillary waves reach this distance there has been some decay, however the gravity

waves have experienced no amplitude loss. This is the reason the plunger motion

for the capillary.waves (Figures 4.la and 4.1b) is larger than that for the longer

waves.

A complete discussion of the relevant theory is present in the previous section

of the report. However some of the experimentally significant results of the theory

are given here. Basically the theory predicts a stronger interaction,-that is, the

gravity wave will have a greater effect on the distribution and amplitude of the

capillary waves, when the phase speed of the gravity wave C1 is either equal to the

3
phase speed of the capillary wave C2 or when C1 = 7 C2 . The greatest effect is

3
expected when C1 = C2 because the energy transfer is at the group velocity and

3
the condition Cl= . C2 corresponds to equal group velocities. Table 4.1 gives the

wavelength, frequency and phase speed for a range of capillary, gravity and

capillary-gravity waves and is used to facilitate comparison of the wave systems.

It is evident from this table that very high frequency capillary waves will be

3
required to meet the condition C1 = C2 . The consequences of this will be

considered later.
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Table 4.1

Wavelength, Frequency and Phase Speed in the Range

of Waves Considered

Wavelength Frequency Phase Speed

x (cm) f (Hertz) c (cm/sec)

30 2.28 68.6

20 2.80 56.1

15 3.24 48.7

10 4.01 40.1

8 4.51 36.1

5 5.90 29.5

4 6.80 27.2

3 8.30 24.9

2 11.6 23.2

1.8 12.8 23.07

1.6 14.4 23.07

1.4 16.6 23.26

1.2 19.8 23.74

1 24.7 24.65

.8 32.8 26.26

.6 48.4 29.1

.4 86.3 34.5

.3 131.3 39.4
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2.3 Experimental Results

As previously mentioned the experimental results are plots of wave height

verses time at increasing distances from the plunger. All data starts at an

initial position 7 cm from the plunger. Data from 3 separate conditions is given.

These conditions are:

Run #1 Gravity or long wave Capillary or short wave

X1 = 10 cm 12 = 1.6 cm

f = 4 Hertz f = 18 Hertz
1 2

C = 40 cm/sec C2 = 23.9 cm/sec

Run #2 Gravity or long wave Capillary or short wave

1 = 5.1 cm 2 = 1.1 cm
1 2

fl = 6 Hertz f 2 
= 24 Hertz

C1 = 30 cm/sec C2 = 24.6 cm/sec

Run #3 Gravity or long wave Capillary or short wave

11 = 5.1 cm 12 =0.86 cm

f = 6 Hertz f2 = 30 Hertz

C1 =30 cm/sec C2 = 25.7 cm/sec

The data for Run #1 is given in Figures 4.3a to 4.3i, for Run #2 in Figures 4 .4a

to 4.4e and for Run #3 in Figures 4.6a to 4.6c. A comparison of the present optical

wave measurement system with a conventional wave height probe can be obtained from

Figures 4.5a and 4.5b, as these data (Figures 
4.5a and 4.5b) were taken with a wave

height probe. The results are now discussed in more detail.

Run #1

The data were obtained at the following positions from the wave source (plunger).

4.3a 7 cm 4.3e 27 cm

4.3b 12 cm 4.3f 32 cm

4.3c 17 cm 4.3g 37 cm

4.3d 22 cm 4.3h 42 cm

4.3i 47 cm
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The wave system data in 4.3a, 4.3b, and 4.3c* shows an even distribution and lends

confidence that the waves were generated as expected. In Figure 4.3e there is

some evidence that the waves are grouped more in the long wave trough, however

4 .3f shows the waves grouped more on the long wave peak. Figure 4.3g and 4.3h

show a similar result. At a position 47 cm from the plunger (Figure 4.3i) the

capillary waves have almost completely decayed away. The capillary or short waves

decay much faster with position than the long waves because they have traveled

many more wave lengths in distance. This is another reason the capillary waves

were generated with larger relative amplitudes.

The apparent shift in position of the capillary waves from the gravity wave

trough to peak and back is believed to be caused by the difference in phase speed

of the two wave systems. By the time the group of capillary waves propagate to the

next position the gravity wave has propagated approximately 3.4 cm farther than

the capillary wave. This places the small waves at a different position on the
wave

gravity/. Indeed this illustrates that unless the gravity wave is sufficiently long

for the capillary waves to die out between crests, a group of short waves will

change position on the long wave unless the phase speeds are equal. The present

wave tank permits wavelengths up to about 12 cm before tank size becomes a problem.

Thus the phase speeds must be equal or else a grouping of short waves will shift

relative position on the long wave.

Run #2

The figures show data obtained at the following positions from the wave

generation source.

4.4a 7 cm 4 .4d 17 cm

4.4b 12 cm 4.4e 22 cm

4.4c 17 cm
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Both the long wave and the short wave are at higher frequencies in an attempt to

generate waves with the phase speeds more nearly equal. The main feature here is

the rapid decay of the capillary waves, and by the time they have traveled 17 cm

from the plunger they have nearly vanished. Figure 4.4d is with an expanded time

scale to verify this. Data given in 4.4e, which is 22cm from the wave source,

contains virtually no short waves.

Because detection of the short waves is marginal at a position 15.5 cm from

the source, (Figures 4 .4c and 4.4d), this data taken by the optical system was

compared with that obtained from a conventional wave height probe. Figure 4.5a

and Figure 4.5b (expanded time scale) shows data at identical conditions of Run #2

15.5 cm from the wave source. These data were taken with a capacitive wave height

probe which had a probe diameter of 0.25 mm. In these data the capillary wave is

completely obscured by the probe. This shows the high resolution of the optical

system and the inherent difficulties associated with using a probe system to measure

capillary waves.

Run #3

This condition has an even higher capillary wave phase speed in an attempt to

determine if the waves group on. the long wave peak or trough. Data are shown for

three positions:

4.6a 7 cm

4.7b 12 cm

4.6c 17 cm

Figure 4.6a demonstrates that the waves are generated as desired and that there is

ample capillary wave content. Figure 4.7b shows considerable capillary wave decay,

and at a distance 17 cm from the wave source the capillary waves are no longer

observable. This demonstrates the inherent problem with attempting to generate both

a long wave and a short wave with the same phase speed. As the short wave length is
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(a) Trace duration = 1.28 sec

(b) Trace duration = 5.1 sec

Figure 4.1 Input to wave generator Run #2, fl 4, f2 = 18.
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LOUDSPEAKER-WAVEMAKER .

DIODE

MIRROR

WAVE DAMPERS

-LASER A \MIRROR

BUFFER AMPLIFIER SUMMING AMPLIFIER POWER AMPLIFIER

INPUT

DRIVE

DCDT

ERROR AMPLIFIER INVERTING AMPLIFIER

Figure 4.2 Schematic representation of the experimental facility and

wavemaker control circuit
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(a) 7 cm from wave source

(b) 12 cm from wave source

(c) 17 cm from wave source

Figure 4.3 Data from Run #1
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(d) 22 cm from wave source

(e) 27 cm from wave source

-I

(f) 32 cm from wave source

Figure 4..3 (cont.) Data from Run #1



170

(g) 37.cm from wave source

(h) 42 cm from wave source

(i) 47 cm from wave source

Figure 4.3 (cont.) Data from Run #1
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(a) 7 cm from wave source

V I

(b) 12 cm from wave source

(c) 15.5 cm from wave source

Figure 4.4 Data from Run #2
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(d) 15.5 cm from wave source
expanded time scale

(e) 17 cm from wave source

Figure 4.4 (cont.) Data from Run #2
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-J

(a) Trace duration = 1.28 sec

(b) Trace duration = 5.1 sec

Figure 4.5 Data from wave height probe Run #2, 15.5 cm from source
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(a) 7 cm from wave source

(b) 12 cam from wave source

(c) 17 cm from wave source

Figure 4.6 Data for Run #3



175

reduced in order to increase the phase speed, the wave decays very rapidly. If

an attempt is made to produce shorter long waves with lower phase speeds, the

distinction between long and short waves is lost.

4.4 Summary and Conclusions

A simple experiment was undertaken to investigate the interaction between

long gravity waves and much shorter capillary waves. The experiment was to

generate both wave systems and to observe the effect of the long wave on the shorter

capillary wave. Run #1 shows the difficulty in analyzing the results when phase

speeds of the two wave systems are different. Run #2 indicates the rapid decay of

the shorter waves with increasing frequency and compares the present optical system

for data acquisition with the conventionsl wave height probe. This illustrates the

necessity of using the optical system. Run #3 verifies the rapid decay of high

frequency capillary waves and shows that it is probably not possible to generate a

distinct long wave and short wave with the same phase speed and have the composite

wave system last for any appreciable length of time or distance of propagation.

-For- -these--observat-ions -it- appears--that-a--system-of-wind-driven-wav-es ,_or_ .

possibly plunger and wind driven waves are necessary for the experiments. If the

short waves are wind generated, then it should be possible to continuously add energy

to the short waves so they do not decay or at least do not decay so rapidly. With

this approach the long waves could be plunger generated and the short wave generated

and sustained by the wind. Under these conditions it should be possible to generate

and measure long waves and short waves which have the same phase speed.
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5. Preliminary Wind-Wave Measurements

5.1 Introduction

The previous sections present the results of measurements of 
waves generated

by a wave maker or plunger. Waves generated in this manner have definite periods

or wave-lengths, and thus it is meaningful to describe the wave by these charac-

teristics. However, wind generated waves are random and thus the only meaningful

data are some form of wave statistics or average properties of the waves. Because

radar backscatter is primarily influenced by surface roughness and also because

,the high frequency components are important, results in the form of wave slope

spectra are the most useful. These data can be obtained with the optical wave

measurement system described in Part 2 of this section. Preliminary results of

wave slope spectra for different conditions of current and wind speed are given

in Figures 5.1. 5.2, 5.3. and 5.4. These results demonstrate a strong relation

between current and slope spectra.

5.2 "Data

The data for the accompanying figures was obtained in the wind-wave tank at

N. C. State University. This tank is 2 ft. x 3 ft. in cross section and has a

fan capable of generating winds'to 40 m/sec. In addition a pump system has been

installed to produce mean water currents. This system permits the generation of

wind waves and the investigation of changes in wind-wave statistics due to a

current.

The data were obtained by recording the output of the optical wave measure-

ment system on magnetic tape. The tape system has a FM record and playback mode

so that low frequency waves can be recorded. Data are recorded for a length of

time sufficient to obtain the desired amount and then played back through an

audio spectrum analyzer. Because the analyzer requires frequencies above
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20 Heriz (audio frequency) the tape speed is increased by a factor of 16 when

played back into the spectrum analyzer. This gives a low frequency limit of

1.25 Hertz in the slope spectra. The output of the spectrum analyzer is then

recorded on an x-y plotter. The data given in 5.1, 5.2, 5.3, and 5.4 are the

analyzer output as plotted. These spectra shows considerable fine scale struc-

true. In order to get a better picture of this structure several spectra are

plotted on top of each other. This shows the-repeatibility of the spectra and

also shows if a particular fine structure characteristic of the spectra or

random. These slope spectra are basically plots.of the relative magnitude of

the PMS slope within specified frequency bands. They are taken with a wind

speed of 2 m/sec at zero water current and with a mean water current of 10 cm/sec

in the direction of the wind. Figures 5.1 and 5.2 are wave slope spectra down

the channel, that is, slope spectra in the direction of the wind or current.

The shift of the spectrum is in quantitative agreement with the theory developed

by Huang, et. al. (1972). Generally it shows that a positive current shifts the

wave energy toward the -lower frequencies.- The data given--in Figures 5.3 and 5.4

are slope spectra across the channel. These have less energy content and, in

addition, both the downwind.and cross wind spectra with the positive current show

less energy transfer from the wind than when there is no current. Therefore it

is not meaningful to compare the relative total energy content of the two spectra.

The data show the expected strong dependence of wave spectra on current.
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d ouced rom

best 8 3-v cop-

S(n)

0 12.5 25 37.5 50 62.5 75 87.5 00 Hertz

Wind = 2 m/sec .Current = 0 cm/sec

12.5 • 25 37.5 50 62.5 75 Hertz

Figure 5.2 Downwind slope spectra
Wind = 2 m/sec Current = 10 cm/sec
Wind 2 rn/sec Current 10 cm/sec
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S(n)

I I I ! I IH r

0 12.5' 25 37.5 50 62.5 7 . 87.5 Hertz

Figure 5.3 Crosswind slope spectra
Wind = 2 m/sec Current = 0

s(n)

0 12.5 25 37.5 50 - 62.5 75 87.5 Hertz

Figure 5.4 Crosswind slope spectra
Wind = 2 m/sec Current = 10 cm/sec
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